Approximate solutions for solving the Klein–Gordon and sine-Gordon equations

Majeed A. Yousif , Bewar A. Mahmood
{"title":"Approximate solutions for solving the Klein–Gordon and sine-Gordon equations","authors":"Majeed A. Yousif ,&nbsp;Bewar A. Mahmood","doi":"10.1016/j.jaubas.2015.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we practiced relatively new, analytical method known as the variational homotopy perturbation method for solving Klein–Gordon and sine-Gordon equations. To present the present method’s effectiveness many examples are given. In this study, we compare numerical results with the exact solutions, the Adomian decomposition method (ADM), the variational iteration method (VIM), homotopy perturbation method (HPM), modified Adomian decomposition method (MADM), and differential transform method (DTM). The results reveal that the VHPM is very effective.</p></div>","PeriodicalId":17232,"journal":{"name":"Journal of the Association of Arab Universities for Basic and Applied Sciences","volume":"22 ","pages":"Pages 83-90"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jaubas.2015.10.003","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Arab Universities for Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1815385215000310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, we practiced relatively new, analytical method known as the variational homotopy perturbation method for solving Klein–Gordon and sine-Gordon equations. To present the present method’s effectiveness many examples are given. In this study, we compare numerical results with the exact solutions, the Adomian decomposition method (ADM), the variational iteration method (VIM), homotopy perturbation method (HPM), modified Adomian decomposition method (MADM), and differential transform method (DTM). The results reveal that the VHPM is very effective.

Klein-Gordon方程和sin - gordon方程的近似解
在本文中,我们实践了相对较新的解析方法,即变分同伦摄动法,用于求解Klein-Gordon和sin - gordon方程。为了说明该方法的有效性,给出了实例。在本研究中,我们将数值结果与精确解、Adomian分解法(ADM)、变分迭代法(VIM)、同伦摄动法(HPM)、改进Adomian分解法(MADM)和微分变换法(DTM)进行比较。结果表明,VHPM是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信