Prediction of viscous dissipation effects on magnetohydrodynamic heat transfer flow of copper-poly vinyl alcohol Jeffrey nanofluid through a stretchable surface using artificial neural network with Bayesian Regularization

Andaç Batur Çolak
{"title":"Prediction of viscous dissipation effects on magnetohydrodynamic heat transfer flow of copper-poly vinyl alcohol Jeffrey nanofluid through a stretchable surface using artificial neural network with Bayesian Regularization","authors":"Andaç Batur Çolak","doi":"10.1016/j.ctta.2022.100056","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the viscous dissipation effects of copper-polyvinyl alcohol (Cu-PVA) Jeffrey nanofluid on magnetohydrodynamic (MHD) heat transfer flow across a stretchable surface have been analyzed with an artificial intelligence approach. The flow parameters, skin friction and Nusselt number, are numerically obtained with a closed Keller-box and partial differential equations converted to a non-linear ordinary differential equation system using the appropriate similarity transformation. Using the obtained data set, two different artificial neural network (ANN) models have been developed. In the multi-layer perceptron (MLP) network model developed with Bayesian Regularization training algorithm, solid volume fraction (φ), Deborah number (β), magnetic parameter (M), Prandtl number (Pr) and Eckert number (Ec) values have been defined as input parameters and skin friction and Nusselt number values ​​have been obtained in the output layer. R values ​​for skin friction and Nusselt number have been calculated as 0.99020 and 0.99394, respectively. The study findings show that the developed ANN model can predict with high accuracy and is a high-performance engineering tool that can be used in modeling viscous dissipation effects.</p></div>","PeriodicalId":9781,"journal":{"name":"Chemical Thermodynamics and Thermal Analysis","volume":"6 ","pages":"Article 100056"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667312622000232/pdfft?md5=c19a7e598b0f7b25efbf1276fde51d60&pid=1-s2.0-S2667312622000232-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Thermodynamics and Thermal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667312622000232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this study, the viscous dissipation effects of copper-polyvinyl alcohol (Cu-PVA) Jeffrey nanofluid on magnetohydrodynamic (MHD) heat transfer flow across a stretchable surface have been analyzed with an artificial intelligence approach. The flow parameters, skin friction and Nusselt number, are numerically obtained with a closed Keller-box and partial differential equations converted to a non-linear ordinary differential equation system using the appropriate similarity transformation. Using the obtained data set, two different artificial neural network (ANN) models have been developed. In the multi-layer perceptron (MLP) network model developed with Bayesian Regularization training algorithm, solid volume fraction (φ), Deborah number (β), magnetic parameter (M), Prandtl number (Pr) and Eckert number (Ec) values have been defined as input parameters and skin friction and Nusselt number values ​​have been obtained in the output layer. R values ​​for skin friction and Nusselt number have been calculated as 0.99020 and 0.99394, respectively. The study findings show that the developed ANN model can predict with high accuracy and is a high-performance engineering tool that can be used in modeling viscous dissipation effects.

基于贝叶斯正则化的人工神经网络预测铜-聚乙烯醇纳米流体在可拉伸表面的粘性耗散对磁流体传热流的影响
本研究采用人工智能方法分析了铜聚乙烯醇(Cu-PVA)杰弗里纳米流体对可拉伸表面磁流体传热流的粘滞耗散效应。利用封闭的Keller-box和偏微分方程,通过适当的相似变换,将其转化为非线性常微分方程系统,数值计算得到了流动参数、表面摩擦力和努塞尔数。利用得到的数据集,建立了两种不同的人工神经网络模型。在采用贝叶斯正则化训练算法建立的多层感知器(MLP)网络模型中,定义了固体体积分数(φ)、Deborah数(β)、磁参数(M)、Prandtl数(Pr)和Eckert数(Ec)值作为输入参数,并在输出层获得了表面摩擦和努塞尔数值。皮肤摩擦和努塞尔数的R值分别为0.99020和0.99394。研究结果表明,所建立的人工神经网络模型具有较高的预测精度,是一种高性能的工程工具,可用于模拟粘滞耗散效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信