Tuning the topological band gap of bismuthene with silicon-based substrates

IF 2.9 4区 物理与天体物理 Q2 OPTICS
Nils Wittemeier, Pablo Ordej'on, Z. Zanolli
{"title":"Tuning the topological band gap of bismuthene with silicon-based substrates","authors":"Nils Wittemeier, Pablo Ordej'on, Z. Zanolli","doi":"10.1088/2515-7639/ac84ad","DOIUrl":null,"url":null,"abstract":"Some metastable polymorphs of bismuth monolayers (bismuthene) can host non-trivial topological phases. However, it remains unclear whether these polymorphs can become stable through interaction with a substrate, whether their topological properties are preserved, and how to design an optimal substrate to make the topological phase more robust. Using first-principles techniques, we demonstrate that bismuthene polymorphs can become stable over silicon carbide (SiC), silicon (Si), and silicon dioxide (SiO2) and that proximity interaction in these heterostructures has a significant effect on the electronic structure of the monolayer, even when bonding is weak. We show that van der Waals interactions and the breaking of the sublattice symmetry are the main factors driving changes in the electronic structure in non-covalently binding heterostructures. Our work demonstrates that substrate interaction can strengthen the topological properties of bismuthene polymorphs and make them accessible for experimental investigations and technological applications.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"32 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/ac84ad","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Some metastable polymorphs of bismuth monolayers (bismuthene) can host non-trivial topological phases. However, it remains unclear whether these polymorphs can become stable through interaction with a substrate, whether their topological properties are preserved, and how to design an optimal substrate to make the topological phase more robust. Using first-principles techniques, we demonstrate that bismuthene polymorphs can become stable over silicon carbide (SiC), silicon (Si), and silicon dioxide (SiO2) and that proximity interaction in these heterostructures has a significant effect on the electronic structure of the monolayer, even when bonding is weak. We show that van der Waals interactions and the breaking of the sublattice symmetry are the main factors driving changes in the electronic structure in non-covalently binding heterostructures. Our work demonstrates that substrate interaction can strengthen the topological properties of bismuthene polymorphs and make them accessible for experimental investigations and technological applications.
用硅基衬底调整铋的拓扑带隙
一些亚稳态多晶铋单层(铋烯)可以承载非平凡的拓扑相。然而,目前尚不清楚这些多晶是否可以通过与衬底相互作用而变得稳定,它们的拓扑性质是否被保留,以及如何设计最佳衬底使拓扑相更健壮。利用第一性原理技术,我们证明了铋多晶可以在碳化硅(SiC)、硅(Si)和二氧化硅(SiO2)上变得稳定,并且这些异质结构中的邻近相互作用对单层电子结构有显著影响,即使在键合较弱的情况下也是如此。我们发现范德华相互作用和亚晶格对称性的破坏是驱动非共价结合异质结构中电子结构变化的主要因素。我们的工作表明,衬底相互作用可以增强铋多晶的拓扑特性,并使其易于实验研究和技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
48.10%
发文量
53
审稿时长
3 months
期刊介绍: This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信