Biocatalytic transformation of semi-finished hardwood into sugars – carrying out the process of enzymatic hydrolysis at a high concentration of substrate

M. Semenova, V. D. Telitsin, A. Rozhkova, E. A. Kondratieva, I. Shashkov, A. D. Satrutdinov, Ya. A. Gareeva, V. G. Moseev, A. M. Kryazhev, A. P. Sinitsyn
{"title":"Biocatalytic transformation of semi-finished hardwood into sugars – carrying out the process of enzymatic hydrolysis at a high concentration of substrate","authors":"M. Semenova, V. D. Telitsin, A. Rozhkova, E. A. Kondratieva, I. Shashkov, A. D. Satrutdinov, Ya. A. Gareeva, V. G. Moseev, A. M. Kryazhev, A. P. Sinitsyn","doi":"10.18412/1816-0387-2023-4-75-83","DOIUrl":null,"url":null,"abstract":"The possibility of exhaustive enzymatic hydrolysis of semi-bleached sulfate hardwood pulp, a semi-finished product of pulp and paper production, at its super high concentrations in the reaction mixture (up to 300 g/l) is shown. For hydrolysis, Russian commercial enzyme preparations were used, the best of them was Agroxyl Plus, which has a high activity of cellulases and endoxylanase. With the help of Agroxyl Plus (at its dosage of 20 mg protein/g substrate) in the presence of an auxiliary enzyme preparation of β-glucosidase (2 mg protein/g substrate) at an initial concentration of semi-bleached cellulose of 300 g/l, 290 g/l sugars (210 g/l glucose, 30 g/l xylose) were obtained. Due to fed-batch enzymatic hydrolysis, it was possible to halve the dosage of Agroxyl Plus (10 mg protein/g of substrate at a total concentration of semi-bleached cellulose of 300 g/l) while maintaining a high yield of hydrolysis products – 270 g/l sugars (200 g/l glucose, 30 g/l xylose).","PeriodicalId":17783,"journal":{"name":"Kataliz v promyshlennosti","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kataliz v promyshlennosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18412/1816-0387-2023-4-75-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The possibility of exhaustive enzymatic hydrolysis of semi-bleached sulfate hardwood pulp, a semi-finished product of pulp and paper production, at its super high concentrations in the reaction mixture (up to 300 g/l) is shown. For hydrolysis, Russian commercial enzyme preparations were used, the best of them was Agroxyl Plus, which has a high activity of cellulases and endoxylanase. With the help of Agroxyl Plus (at its dosage of 20 mg protein/g substrate) in the presence of an auxiliary enzyme preparation of β-glucosidase (2 mg protein/g substrate) at an initial concentration of semi-bleached cellulose of 300 g/l, 290 g/l sugars (210 g/l glucose, 30 g/l xylose) were obtained. Due to fed-batch enzymatic hydrolysis, it was possible to halve the dosage of Agroxyl Plus (10 mg protein/g of substrate at a total concentration of semi-bleached cellulose of 300 g/l) while maintaining a high yield of hydrolysis products – 270 g/l sugars (200 g/l glucose, 30 g/l xylose).
半成品硬木的生物催化转化成糖-在高浓度的底物下进行酶水解的过程
半漂白硫酸盐硬木纸浆是纸浆和纸张生产的半成品,在反应混合物中的超高浓度(高达300克/升)下,酶解彻底水解的可能性。采用俄罗斯市售酶制剂进行水解,其中最好的是Agroxyl Plus,它具有较高的纤维素酶和内木聚糖酶活性。利用Agroxyl Plus(用量为20 mg蛋白/g底物)在辅助酶存在下,以初始浓度为300 g/l的半漂白纤维素、290 g/l糖(210 g/l葡萄糖、30 g/l木糖)制备β-葡萄糖苷酶(2 mg蛋白/g底物)。由于补料分批酶解,有可能将Agroxyl Plus的用量减半(在半漂白纤维素总浓度为300 g/l时,10 mg蛋白质/g底物),同时保持高水解产物的产量- 270 g/l糖(200 g/l葡萄糖,30 g/l木糖)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信