{"title":"Sparse Quantization for Patch Description","authors":"X. Boix, Michael Gygli, G. Roig, L. Gool","doi":"10.1109/CVPR.2013.366","DOIUrl":null,"url":null,"abstract":"The representation of local image patches is crucial for the good performance and efficiency of many vision tasks. Patch descriptors have been designed to generalize towards diverse variations, depending on the application, as well as the desired compromise between accuracy and efficiency. We present a novel formulation of patch description, that serves such issues well. Sparse quantization lies at its heart. This allows for efficient encodings, leading to powerful, novel binary descriptors, yet also to the generalization of existing descriptors like SIFT or BRIEF. We demonstrate the capabilities of our formulation for both key point matching and image classification. Our binary descriptors achieve state-of-the-art results for two key point matching benchmarks, namely those by Brown and Mikolajczyk. For image classification, we propose new descriptors, that perform similar to SIFT on Caltech101 and PASCAL VOC07.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"46 1","pages":"2842-2849"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The representation of local image patches is crucial for the good performance and efficiency of many vision tasks. Patch descriptors have been designed to generalize towards diverse variations, depending on the application, as well as the desired compromise between accuracy and efficiency. We present a novel formulation of patch description, that serves such issues well. Sparse quantization lies at its heart. This allows for efficient encodings, leading to powerful, novel binary descriptors, yet also to the generalization of existing descriptors like SIFT or BRIEF. We demonstrate the capabilities of our formulation for both key point matching and image classification. Our binary descriptors achieve state-of-the-art results for two key point matching benchmarks, namely those by Brown and Mikolajczyk. For image classification, we propose new descriptors, that perform similar to SIFT on Caltech101 and PASCAL VOC07.