Yong Shi, Xia Yan, Hengxia Yin, C. Qian, Xingke Fan, Xiaoyue Yin, Yuxin Chang, Cheng‐Jun Zhang, Xiao-Fei Ma
{"title":"Divergence and hybridization in the desert plant Reaumuria soongarica","authors":"Yong Shi, Xia Yan, Hengxia Yin, C. Qian, Xingke Fan, Xiaoyue Yin, Yuxin Chang, Cheng‐Jun Zhang, Xiao-Fei Ma","doi":"10.1111/jse.12490","DOIUrl":null,"url":null,"abstract":"Speciation is widely accepted to be a complex and continuous process. Due to complicated evolutionary histories, desert plants are ideal model systems to understand the process of speciation along a continuum. Here, we elucidate the evolutionary history of Reaumuria soongarica (Pall.) Maxim., a typical desert plant that is wildly distributed across arid central Asia. Based on variation patterns present at nine nuclear loci in 325 individuals (representing 41 populations), we examined the demographic history, patterns of gene flow, and degree of ecological differentiation among wild R. soongarica. Our findings indicate that genetic divergence between the ancient western and eastern lineages of R. soongarica occurred approximately 0.714 Mya, probably due to the Kunlun–Yellow River tectonic movement and the Naynayxungla glaciation. Later, multiple hybridization events between the western and eastern lineages that took place between 0.287 and 0.543 Mya, and which might have been triggered by the asynchronous historical expansion of the western and eastern deserts, contributed to the formation of a hybrid northern lineage. Moreover, despite continuing gene flow into this population from its progenitors, the northern lineage maintained its genetic boundary by ecological differentiation. The northern lineage could be an incipient species, and provides an opportunity to study the continuous process of speciation. This study suggests that two opposite evolutionary forces, divergence and hybridization, coexisting in the continuous speciation of the desert plant R. soongarica in a short time. Moreover, we provide evidence that this continuous speciation process is affected by geological events, climatic change, and ecological differentiation.","PeriodicalId":101317,"journal":{"name":"JOURNAL OF SYSTEMATICS AND EVOLUTION","volume":"8 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SYSTEMATICS AND EVOLUTION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/jse.12490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Speciation is widely accepted to be a complex and continuous process. Due to complicated evolutionary histories, desert plants are ideal model systems to understand the process of speciation along a continuum. Here, we elucidate the evolutionary history of Reaumuria soongarica (Pall.) Maxim., a typical desert plant that is wildly distributed across arid central Asia. Based on variation patterns present at nine nuclear loci in 325 individuals (representing 41 populations), we examined the demographic history, patterns of gene flow, and degree of ecological differentiation among wild R. soongarica. Our findings indicate that genetic divergence between the ancient western and eastern lineages of R. soongarica occurred approximately 0.714 Mya, probably due to the Kunlun–Yellow River tectonic movement and the Naynayxungla glaciation. Later, multiple hybridization events between the western and eastern lineages that took place between 0.287 and 0.543 Mya, and which might have been triggered by the asynchronous historical expansion of the western and eastern deserts, contributed to the formation of a hybrid northern lineage. Moreover, despite continuing gene flow into this population from its progenitors, the northern lineage maintained its genetic boundary by ecological differentiation. The northern lineage could be an incipient species, and provides an opportunity to study the continuous process of speciation. This study suggests that two opposite evolutionary forces, divergence and hybridization, coexisting in the continuous speciation of the desert plant R. soongarica in a short time. Moreover, we provide evidence that this continuous speciation process is affected by geological events, climatic change, and ecological differentiation.