Jiumei Hu, Liben Chen, Pengfei Zhang, K. Hsieh, Hui Li, Tza-Huei Wang
{"title":"A Vacuum-Driven Microfluidic Array for Multi-Step Sample Digitalization","authors":"Jiumei Hu, Liben Chen, Pengfei Zhang, K. Hsieh, Hui Li, Tza-Huei Wang","doi":"10.1109/Transducers50396.2021.9495676","DOIUrl":null,"url":null,"abstract":"We present herein a facile vacuum-driven microfluidic device that is capable of multi-step sample digitalization based on the gas permeability of PDMS. The device features 1) a suction layer that is connected to an external vacuum to generate a continuous negative pressure within the device, and 2) an outlet-free microarray layer with treelike multi-level bifurcated microchannels connecting to 4096 dead-end microwells to realize multiple loading steps until all the microwells being filled. To efficiently prevent sample evaporation at high temperatures, we use a glass slide that is pre-poured with thermosetting oil to seal the gas-permeable PDMS. Moreover, we demonstrated successful detection of single-cell methicillin-resistant Staphylococcus aureus (MRSA) with three loading steps targeting the resistance marker gene MecA via digital PCR amplification on the device.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"1 1","pages":"1004-1007"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present herein a facile vacuum-driven microfluidic device that is capable of multi-step sample digitalization based on the gas permeability of PDMS. The device features 1) a suction layer that is connected to an external vacuum to generate a continuous negative pressure within the device, and 2) an outlet-free microarray layer with treelike multi-level bifurcated microchannels connecting to 4096 dead-end microwells to realize multiple loading steps until all the microwells being filled. To efficiently prevent sample evaporation at high temperatures, we use a glass slide that is pre-poured with thermosetting oil to seal the gas-permeable PDMS. Moreover, we demonstrated successful detection of single-cell methicillin-resistant Staphylococcus aureus (MRSA) with three loading steps targeting the resistance marker gene MecA via digital PCR amplification on the device.