On the Bogolyubov endomorphisms of the renormalized square of white noise algebra

Pub Date : 2021-12-29 DOI:10.1142/s0219025721500235
H. Rebei, Slaheddine Wannes
{"title":"On the Bogolyubov endomorphisms of the renormalized square of white noise algebra","authors":"H. Rebei, Slaheddine Wannes","doi":"10.1142/s0219025721500235","DOIUrl":null,"url":null,"abstract":"We introduce the quadratic analogue of the Bogolyubov endomorphisms of the canonical commutation relations (CCR) associated with the re-normalized square of white noise algebra (RSWN-algebra). We focus on the structure of a subclass of these endomorphisms: each of them is uniquely determined by a quadruple [Formula: see text], where [Formula: see text] are linear transformations from a test-function space [Formula: see text] into itself, while [Formula: see text] is anti-linear on [Formula: see text] and [Formula: see text] is real. Precisely, we prove that [Formula: see text] and [Formula: see text] are uniquely determined by two arbitrary complex-valued Borel functions of modulus [Formula: see text] and two maps of [Formula: see text], into itself. Under some additional analytic conditions on [Formula: see text] and [Formula: see text], we discover that we have only two equivalent classes of Bogolyubov endomorphisms, one of them corresponds to the case [Formula: see text] and the other corresponds to the case [Formula: see text]. Finally, we close the paper by building some examples in one and multi-dimensional cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025721500235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the quadratic analogue of the Bogolyubov endomorphisms of the canonical commutation relations (CCR) associated with the re-normalized square of white noise algebra (RSWN-algebra). We focus on the structure of a subclass of these endomorphisms: each of them is uniquely determined by a quadruple [Formula: see text], where [Formula: see text] are linear transformations from a test-function space [Formula: see text] into itself, while [Formula: see text] is anti-linear on [Formula: see text] and [Formula: see text] is real. Precisely, we prove that [Formula: see text] and [Formula: see text] are uniquely determined by two arbitrary complex-valued Borel functions of modulus [Formula: see text] and two maps of [Formula: see text], into itself. Under some additional analytic conditions on [Formula: see text] and [Formula: see text], we discover that we have only two equivalent classes of Bogolyubov endomorphisms, one of them corresponds to the case [Formula: see text] and the other corresponds to the case [Formula: see text]. Finally, we close the paper by building some examples in one and multi-dimensional cases.
分享
查看原文
白噪声代数重归一化方的Bogolyubov自同态
介绍了与白噪声代数(rswn -代数)的再归一化平方相关的正则对易关系(CCR)的Bogolyubov自同态的二次模拟。我们关注这些自同态的一个子类的结构:它们中的每一个都是由一个四重体(公式:见文)唯一确定的,其中[公式:见文]是从一个测试函数空间[公式:见文]到自身的线性变换,而[公式:见文]在[公式:见文]上是反线性的,[公式:见文]是实数。确切地说,我们证明了[公式:见文]和[公式:见文]是由模[公式:见文]的两个任意复值Borel函数和[公式:见文]的两个映射唯一地决定的。在[公式:见文]和[公式:见文]的一些附加解析条件下,我们发现只有两个等价的Bogolyubov自同态,其中一类对应于[公式:见文],另一类对应于[公式:见文]。最后,我们通过在一维和多维情况下建立一些例子来结束本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信