Regularized autoregressive models for a spectral estimation scheme dedicated to medical ultrasonic radio-frequency images

J. Gorce, D. Friboulet, J. D’hooge, B. Bijnens, I. Magnin
{"title":"Regularized autoregressive models for a spectral estimation scheme dedicated to medical ultrasonic radio-frequency images","authors":"J. Gorce, D. Friboulet, J. D’hooge, B. Bijnens, I. Magnin","doi":"10.1109/ULTSYM.1997.661852","DOIUrl":null,"url":null,"abstract":"The local spectral estimation from radio-frequency (RF) signals in medical echographic ultrasound images is not a trivial task due to the noisy nature of the data resulting from a stochastic and nonstationary process, Significant improvements may be obtained by proposing a spatial regularization scheme, smoothing the local spectral estimates while preserving the discontinuities. Based on AR models, the authors propose a 2D regularization scheme in a Bayesian framework. The a-priori knowledge is expressed by means of Markovian Random Fields (MRF) defined on the reflection coefficients. The use of nonquadratic functions allows to preserve discontinuities. First the authors applied their method on simulated data containing spatial discontinuities of spectral characteristics, which showed the efficiency of the regularization technique. Then the technique was used on cardiac RF data. This shows the improvements as well for Integrated Backscatter (IBS) images as for Mean Central Frequency (MCF) Images or whole spectral estimation.","PeriodicalId":6369,"journal":{"name":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","volume":"14 1","pages":"1461-1464 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1997.661852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The local spectral estimation from radio-frequency (RF) signals in medical echographic ultrasound images is not a trivial task due to the noisy nature of the data resulting from a stochastic and nonstationary process, Significant improvements may be obtained by proposing a spatial regularization scheme, smoothing the local spectral estimates while preserving the discontinuities. Based on AR models, the authors propose a 2D regularization scheme in a Bayesian framework. The a-priori knowledge is expressed by means of Markovian Random Fields (MRF) defined on the reflection coefficients. The use of nonquadratic functions allows to preserve discontinuities. First the authors applied their method on simulated data containing spatial discontinuities of spectral characteristics, which showed the efficiency of the regularization technique. Then the technique was used on cardiac RF data. This shows the improvements as well for Integrated Backscatter (IBS) images as for Mean Central Frequency (MCF) Images or whole spectral estimation.
医用超声射频图像频谱估计方案的正则化自回归模型
医学超声图像中射频(RF)信号的局部频谱估计不是一项简单的任务,因为随机和非平稳过程产生的数据具有噪声性质,通过提出空间正则化方案,可以在保留不连续性的同时平滑局部频谱估计,从而获得显著的改进。基于AR模型,提出了一种基于贝叶斯框架的二维正则化方案。先验知识通过反射系数上定义的马尔可夫随机场(MRF)表示。使用非二次函数可以保持不连续。首先,将该方法应用于包含光谱特征空间不连续的模拟数据,验证了正则化技术的有效性。然后将该技术应用于心脏射频数据。这表明了对综合后向散射(IBS)图像的改进,以及对平均中心频率(MCF)图像或全光谱估计的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信