Tarun Patodia, K. Sharma, Shalini Dixit, S. Katyayan, G. Agarwal, S. Jain, C. Saini, B. Tripathi
{"title":"Physico-Chemical Analysis of GO-S and rGO-S Composites as Electrodes for Flexible Li-S Battery","authors":"Tarun Patodia, K. Sharma, Shalini Dixit, S. Katyayan, G. Agarwal, S. Jain, C. Saini, B. Tripathi","doi":"10.1166/ASEM.2020.2654","DOIUrl":null,"url":null,"abstract":"Lithium-sulphur batteries are one of the very appealing power sources with high energy density. In addition, sulfur (S) is also inexpensive, abundant, and nontoxic. Therefore, sulfur is a promising cathode material for high specific energy Li–S batteries. In this work, we used\n a low-cost and environmentally benign chemical reaction deposition strategy to immobilize sulfur on quasi two dimensional graphene oxides (GO) to prepare graphene oxide-sulfur (GO–S) and reduced-graphene oxide-sulfur (rGO–S) nanocomposite cathodes for Li–S batteries. The\n characterization of these composites have been performed by using X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) analysis. The XRD results reveals the orthorhombic crystalline\n structure of GO–S and rGO–S composites confirmed by diffraction peaks at 2θ = 22.90(222),25.90(026) and 28.00 (040). FT-IR spectra confirms bonding structure of composites. SEM and TEM images confirm interconnected network of GO–S and\n rGO–S composites having uniform surface morphology with particle size distribution 32–36 nm respectively.","PeriodicalId":7213,"journal":{"name":"Advanced Science, Engineering and Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science, Engineering and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/ASEM.2020.2654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Lithium-sulphur batteries are one of the very appealing power sources with high energy density. In addition, sulfur (S) is also inexpensive, abundant, and nontoxic. Therefore, sulfur is a promising cathode material for high specific energy Li–S batteries. In this work, we used
a low-cost and environmentally benign chemical reaction deposition strategy to immobilize sulfur on quasi two dimensional graphene oxides (GO) to prepare graphene oxide-sulfur (GO–S) and reduced-graphene oxide-sulfur (rGO–S) nanocomposite cathodes for Li–S batteries. The
characterization of these composites have been performed by using X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) analysis. The XRD results reveals the orthorhombic crystalline
structure of GO–S and rGO–S composites confirmed by diffraction peaks at 2θ = 22.90(222),25.90(026) and 28.00 (040). FT-IR spectra confirms bonding structure of composites. SEM and TEM images confirm interconnected network of GO–S and
rGO–S composites having uniform surface morphology with particle size distribution 32–36 nm respectively.