Interpolated Nonparametric Prediction Intervals and Confidence Intervals

R. Beran, P. Hall
{"title":"Interpolated Nonparametric Prediction Intervals and Confidence Intervals","authors":"R. Beran, P. Hall","doi":"10.1111/J.2517-6161.1993.TB01929.X","DOIUrl":null,"url":null,"abstract":"In several important statistical problems, prediction intervals and confidence intervals can be constructed with coverage levels which are known precisely but cannot be rendered equal to predetermined levels such as 0.95. One solution to this difficulty is to interpolate between such intervals. We show that simple linear interpolation reduces the order of coverage error, but that higher orders of interpolation produce no further improvement. The error is reduced by a factor n -1 for prediction intervals and n -1/2 for confidence intervals, where n denotes sample size. In the case of confidence intervals for quantiles, linear interpolation provides particularly accurate intervals which err on the side of conservatism","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"50 1","pages":"643-652"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1993.TB01929.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

In several important statistical problems, prediction intervals and confidence intervals can be constructed with coverage levels which are known precisely but cannot be rendered equal to predetermined levels such as 0.95. One solution to this difficulty is to interpolate between such intervals. We show that simple linear interpolation reduces the order of coverage error, but that higher orders of interpolation produce no further improvement. The error is reduced by a factor n -1 for prediction intervals and n -1/2 for confidence intervals, where n denotes sample size. In the case of confidence intervals for quantiles, linear interpolation provides particularly accurate intervals which err on the side of conservatism
插值非参数预测区间和置信区间
在一些重要的统计问题中,预测区间和置信区间可以用精确已知的覆盖水平来构建,但不能使其等于预定的水平,如0.95。解决这个困难的一个办法是在这些间隔之间进行插值。我们发现简单的线性插值降低了覆盖误差的阶数,但更高阶的插值没有进一步的改善。对于预测区间,误差减少一个因子n -1,对于置信区间,误差减少一个因子n -1/2,其中n表示样本量。在分位数置信区间的情况下,线性插值提供了特别准确的区间,这在保守性方面犯了错误
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信