Perbandingan Performa Model Data Mining untuk Prediksi Dropout Mahasiwa

Muchamad Taufiq Anwar, D. Permana
{"title":"Perbandingan Performa Model Data Mining untuk Prediksi Dropout Mahasiwa","authors":"Muchamad Taufiq Anwar, D. Permana","doi":"10.52330/jtm.v19i2.34","DOIUrl":null,"url":null,"abstract":"Penentuan teknik/model data mining yang tepat pada sebuah kasus sangat penting untuk mendapatkan model yang baik (tingkat akurat tinggi dan kesesuaiannya dengan masalah yang dipecahkan). Penelitian ini bertujuan untuk membandingkan performa teknik data mining untuk diterapkan pada kasus prediksi dropout mahasiswa. Perbandingan performa dilakukan menggunakan library PyCaret pada Python untuk melakukan pemodelan menggunakan 14 model / teknik data mining yaitu: Extreme Gradient Boosting, Ada Boost Classifier, Light Gradient Boosting Machine, Random Forest Classifier, Gradient Boosting Classifier, Extra Trees Classifier, Decision Tree Classifier, K Neighbors Classifier, Naive Bayes, Ridge Classifier, Linear Discriminant Analysis, Logistic Regression, SVM - Linear Kernel, dan Quadratic Discriminant Analysis. Metrik evaluasi performa model yang digunakan yaitu Accuracy, AUC, Recall, Precision, F1, Kappa, dan MCC (Matthews correlation coefficient). Hasil eksperimen menunjukkan bahwa kasus prediksi dropout mahasiswa lebih tepat jika dimodelkan dengan model berbasis ensemble learner dan pohon keputusan dengan akurasi mencapai 99%. Pohon keputusan memiliki keunggulan dibandingkan model lain seperti SVM - Linear Kernel dan Quadratic Discriminant Analysis karena ia dapat dengan lebih detil dalam memisahkan data ke dalam kedua kelas target. Setelah dilakukan penyesuaian atribut, pembuangan data dengan missing values, dan parameter tuning, didapatkan hasil akurasi yang mirip dari berbagai model yaitu sebesar 87%. Perbedaan akurasi antar model menjadi sangat kecil di saat atribut data yang digunakan sedikit.","PeriodicalId":32572,"journal":{"name":"Industria Jurnal Teknologi dan Manajemen Agroindustri","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industria Jurnal Teknologi dan Manajemen Agroindustri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52330/jtm.v19i2.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Penentuan teknik/model data mining yang tepat pada sebuah kasus sangat penting untuk mendapatkan model yang baik (tingkat akurat tinggi dan kesesuaiannya dengan masalah yang dipecahkan). Penelitian ini bertujuan untuk membandingkan performa teknik data mining untuk diterapkan pada kasus prediksi dropout mahasiswa. Perbandingan performa dilakukan menggunakan library PyCaret pada Python untuk melakukan pemodelan menggunakan 14 model / teknik data mining yaitu: Extreme Gradient Boosting, Ada Boost Classifier, Light Gradient Boosting Machine, Random Forest Classifier, Gradient Boosting Classifier, Extra Trees Classifier, Decision Tree Classifier, K Neighbors Classifier, Naive Bayes, Ridge Classifier, Linear Discriminant Analysis, Logistic Regression, SVM - Linear Kernel, dan Quadratic Discriminant Analysis. Metrik evaluasi performa model yang digunakan yaitu Accuracy, AUC, Recall, Precision, F1, Kappa, dan MCC (Matthews correlation coefficient). Hasil eksperimen menunjukkan bahwa kasus prediksi dropout mahasiswa lebih tepat jika dimodelkan dengan model berbasis ensemble learner dan pohon keputusan dengan akurasi mencapai 99%. Pohon keputusan memiliki keunggulan dibandingkan model lain seperti SVM - Linear Kernel dan Quadratic Discriminant Analysis karena ia dapat dengan lebih detil dalam memisahkan data ke dalam kedua kelas target. Setelah dilakukan penyesuaian atribut, pembuangan data dengan missing values, dan parameter tuning, didapatkan hasil akurasi yang mirip dari berbagai model yaitu sebesar 87%. Perbedaan akurasi antar model menjadi sangat kecil di saat atribut data yang digunakan sedikit.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信