{"title":"Pose Tracking Control for Spacecraft Proximity Operations Using the Udwadia-Kalaba Framework","authors":"Abin Alex Pothen, S. Ulrich","doi":"10.2514/6.2020-1598","DOIUrl":null,"url":null,"abstract":"This thesis develops an analytical dynamics-based approach for simultaneous position and orientation tracking control of a chaser spacecraft with respect to an uncontrolled target spacecraft. The control requirements are formulated as holonomic or non-holonomic constraints, which are differentiated to obtain a constraint equation linear in acceleration. Exact real-time control forces are then generated by substituting the control constraints into the Udwadia-Kalaba equation. Three major contributions are presented. Firstly, the complete six-degree-of-freedom formulation of the Udwadia-Kalaba based pose tracking controller is presented. Simulations demonstrate the achievement of the desired objectives in space. Subsequently, a planar pose tracking controller is formulated for both a single and dual chaser configuration. Simulation results highlight the planar position and orientation synchronization with respect to a spinning target. Finally, the controller is experimentally validated in the Spacecraft Proximity Operations Testbed at Carleton University. Results show that the pose tracking control objective is achieved.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-1598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This thesis develops an analytical dynamics-based approach for simultaneous position and orientation tracking control of a chaser spacecraft with respect to an uncontrolled target spacecraft. The control requirements are formulated as holonomic or non-holonomic constraints, which are differentiated to obtain a constraint equation linear in acceleration. Exact real-time control forces are then generated by substituting the control constraints into the Udwadia-Kalaba equation. Three major contributions are presented. Firstly, the complete six-degree-of-freedom formulation of the Udwadia-Kalaba based pose tracking controller is presented. Simulations demonstrate the achievement of the desired objectives in space. Subsequently, a planar pose tracking controller is formulated for both a single and dual chaser configuration. Simulation results highlight the planar position and orientation synchronization with respect to a spinning target. Finally, the controller is experimentally validated in the Spacecraft Proximity Operations Testbed at Carleton University. Results show that the pose tracking control objective is achieved.