On simultaneous solution of the KdV equation and a fifth-order differential equation

IF 0.5 Q3 MATHEMATICS
R. Garifullin
{"title":"On simultaneous solution of the KdV equation and a fifth-order differential equation","authors":"R. Garifullin","doi":"10.13108/2016-8-4-52","DOIUrl":null,"url":null,"abstract":"In the paper we consider an universal solution to the KdV equation. This solution also satisfies a fifth order ordinary differential equation. We pose the problem on studying the behavior of this solution as t → ∞. For large time, the asymptotic solution has different structure depending on the slow variable s = x2/t. We construct the asymptotic solution in the domains s < −3/4, −3/4 < s < 5/24 and in the vicinity of the point s = −3/4. It is shown that a slow modulation of solution’s parameters in the vicinity of the point s = −3/4 is described by a solution to Painlevé IV equation.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"104 1","pages":"52-61"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2016-8-4-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

In the paper we consider an universal solution to the KdV equation. This solution also satisfies a fifth order ordinary differential equation. We pose the problem on studying the behavior of this solution as t → ∞. For large time, the asymptotic solution has different structure depending on the slow variable s = x2/t. We construct the asymptotic solution in the domains s < −3/4, −3/4 < s < 5/24 and in the vicinity of the point s = −3/4. It is shown that a slow modulation of solution’s parameters in the vicinity of the point s = −3/4 is described by a solution to Painlevé IV equation.
KdV方程与五阶微分方程的联立解
本文考虑了KdV方程的一个通解。这个解也满足一个五阶常微分方程。我们提出了研究该解在t→∞时的行为的问题。对于大时间,随着慢变量s = x2/t的变化,渐近解具有不同的结构。构造了在s <−3/4,−3/4 < s < 5/24和点s =−3/4附近的渐近解。结果表明,在点s =−3/4附近溶液参数的缓慢调制可以用painlevev方程的解来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信