A class of Integral Operators from Lebesgue spaces into Harmonic Bergman-Besov or Weighted Bloch Spaces

Ö. Doğan
{"title":"A class of Integral Operators from Lebesgue spaces into Harmonic Bergman-Besov or Weighted Bloch Spaces","authors":"Ö. Doğan","doi":"10.15672/HUJMS.768123","DOIUrl":null,"url":null,"abstract":"We consider a class of two-parameter weighted integral operators induced by harmonic Bergman-Besov kernels on the unit ball of $\\mathbb{R}^{n}$ and characterize precisely those that are bounded from Lebesgue spaces $L^{p}_{\\alpha}$ into Harmonic Bergman-Besov $b^{q}_{\\beta}$ or weighted Bloch Spaces $b^{\\infty}_{\\beta} $, for $1\\leq p\\leq\\infty$, $1\\leq q -1$ when $q<\\infty$ and $\\beta\\geq 0$ when $q=\\infty$ of Dogan (A Class of Integral Operators Induced by Harmonic Bergman-Besov kernels on Lebesgue Classes, preprint, 2020) by mapping the operators into these spaces instead of the Lebesgue classes.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15672/HUJMS.768123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a class of two-parameter weighted integral operators induced by harmonic Bergman-Besov kernels on the unit ball of $\mathbb{R}^{n}$ and characterize precisely those that are bounded from Lebesgue spaces $L^{p}_{\alpha}$ into Harmonic Bergman-Besov $b^{q}_{\beta}$ or weighted Bloch Spaces $b^{\infty}_{\beta} $, for $1\leq p\leq\infty$, $1\leq q -1$ when $q<\infty$ and $\beta\geq 0$ when $q=\infty$ of Dogan (A Class of Integral Operators Induced by Harmonic Bergman-Besov kernels on Lebesgue Classes, preprint, 2020) by mapping the operators into these spaces instead of the Lebesgue classes.
一类从Lebesgue空间到调和Bergman-Besov或加权Bloch空间的积分算子
我们考虑了在$\mathbb{R}^{n}$的单位球上由调和Bergman-Besov核诱导的一类两参数加权积分算子,并精确地描述了那些从Lebesgue空间$L^{p}_{\alpha}$入调和Bergman-Besov $b^{q}_{\beta}$或加权Bloch空间$b^{\infty}_{\beta} $的算子,对于$1\leq p\leq\infty$,通过将算子映射到这些空间而不是映射到Lebesgue类上的调和Bergman-Besov核诱导的一类积分算子$1\leq q -1$ when $q<\infty$和$\beta\geq 0$ when $q=\infty$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信