Moderate deviations for extreme eigenvalues of beta-Laguerre ensembles

IF 0.9 4区 数学 Q4 PHYSICS, MATHEMATICAL
Lei Chen, Shaochen Wang
{"title":"Moderate deviations for extreme eigenvalues of beta-Laguerre ensembles","authors":"Lei Chen, Shaochen Wang","doi":"10.1142/S2010326320500033","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be respectively the largest and smallest eigenvalues of beta-Laguerre ensembles with parameters [Formula: see text]. For fixed [Formula: see text], under the condition that [Formula: see text] is much larger than [Formula: see text], we obtain the full moderate deviation principles for [Formula: see text] and [Formula: see text] by using the asymptotic expansion technique. Interestingly, under this regime, our results show that asymptotically the exponential tails of the extreme eigenvalues are Gaussian-type distribution tail rather than the Tracy–Widom-type distribution tail.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"24 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326320500033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be respectively the largest and smallest eigenvalues of beta-Laguerre ensembles with parameters [Formula: see text]. For fixed [Formula: see text], under the condition that [Formula: see text] is much larger than [Formula: see text], we obtain the full moderate deviation principles for [Formula: see text] and [Formula: see text] by using the asymptotic expansion technique. Interestingly, under this regime, our results show that asymptotically the exponential tails of the extreme eigenvalues are Gaussian-type distribution tail rather than the Tracy–Widom-type distribution tail.
β - laguerre系综极端特征值的中等偏差
令[公式:见文]分别为带参数的beta-Laguerre系综的最大和最小特征值[公式:见文]。对于固定的[公式:见文],在[公式:见文]远大于[公式:见文]的情况下,利用渐近展开技术,得到了[公式:见文]和[公式:见文]的完全中等偏差原理。有趣的是,在这种情况下,我们的结果表明,极端特征值的指数尾渐近是高斯型分布尾,而不是特雷西-威多姆型分布尾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Matrices-Theory and Applications
Random Matrices-Theory and Applications Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
11.10%
发文量
29
期刊介绍: Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics. Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory. Special issues devoted to single topic of current interest will also be considered and published in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信