Sparse approximations with a high resolution greedy algorithm

Q3 Arts and Humanities
B. G. Salomon, H. Ur
{"title":"Sparse approximations with a high resolution greedy algorithm","authors":"B. G. Salomon, H. Ur","doi":"10.1109/ICECS.2004.1399685","DOIUrl":null,"url":null,"abstract":"Signal decomposition with an overcomplete dictionary is nonunique. Computation of the best approximation is known to be NP-hard problem. The matching pursuit (MP) algorithm is a popular iterative greedy algorithm that finds a sub-optimal approximation, by picking at each iteration the vector that best correlates with the present residual. Choosing approximation vectors by optimizing a correlation inner product can produce a loss of time and frequency resolution. We propose a modified MP, based on a post processing step applied on the resulting MP approximation, using the backward greedy algorithm, to achieve higher resolution than the original MP.","PeriodicalId":38467,"journal":{"name":"Giornale di Storia Costituzionale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Giornale di Storia Costituzionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2004.1399685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2

Abstract

Signal decomposition with an overcomplete dictionary is nonunique. Computation of the best approximation is known to be NP-hard problem. The matching pursuit (MP) algorithm is a popular iterative greedy algorithm that finds a sub-optimal approximation, by picking at each iteration the vector that best correlates with the present residual. Choosing approximation vectors by optimizing a correlation inner product can produce a loss of time and frequency resolution. We propose a modified MP, based on a post processing step applied on the resulting MP approximation, using the backward greedy algorithm, to achieve higher resolution than the original MP.
稀疏逼近与高分辨率贪婪算法
使用过完全字典的信号分解是非唯一的。最佳近似的计算被认为是np困难问题。匹配追踪(MP)算法是一种流行的迭代贪婪算法,它通过在每次迭代中挑选与当前残差最相关的向量来找到次优逼近。通过优化相关内积来选择近似向量会造成时间和频率分辨率的损失。我们提出了一种改进的MP,基于后处理步骤应用于得到的MP近似,使用后向贪婪算法,以获得比原始MP更高的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Giornale di Storia Costituzionale
Giornale di Storia Costituzionale Arts and Humanities-History
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信