{"title":"Facet Suppression in (100) GaAs spalling via use of a Nanoimprint Lithography Release Layer","authors":"Anna K. Braun, San Theingi, A. Ptak, C. Packard","doi":"10.1109/PVSC43889.2021.9518974","DOIUrl":null,"url":null,"abstract":"Controlled spalling is an emerging technique developed for fast, scalable wafer reuse, but for the commonly used (100) GaAs substrate system, the process leaves large facets ranging from 5-10 µm on the wafer surface. Removing them for wafer reuse requires a costly re-polishing step that limits the cost savings that can be achieved with spalling as a wafer reuse technique. In this study, we investigate facet suppression in spalling of (100) GaAs by redirecting the fracture front along features created by buried nanoimprint lithography (NIL)-patterned SiO2. We show successful facet suppression using patterns that result in favorable fracture along the SiO2/GaAs interface. The results from this work show NIL patterned interlayers are a promising method for faceting suppression in (100) GaAs spalling.","PeriodicalId":6788,"journal":{"name":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","volume":"33 1","pages":"1507-1509"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC43889.2021.9518974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Controlled spalling is an emerging technique developed for fast, scalable wafer reuse, but for the commonly used (100) GaAs substrate system, the process leaves large facets ranging from 5-10 µm on the wafer surface. Removing them for wafer reuse requires a costly re-polishing step that limits the cost savings that can be achieved with spalling as a wafer reuse technique. In this study, we investigate facet suppression in spalling of (100) GaAs by redirecting the fracture front along features created by buried nanoimprint lithography (NIL)-patterned SiO2. We show successful facet suppression using patterns that result in favorable fracture along the SiO2/GaAs interface. The results from this work show NIL patterned interlayers are a promising method for faceting suppression in (100) GaAs spalling.