Cubic approximants in quasicrystal structures

V. Dmitrienko
{"title":"Cubic approximants in quasicrystal structures","authors":"V. Dmitrienko","doi":"10.1051/JPHYS:0199000510230271700","DOIUrl":null,"url":null,"abstract":"2014 The regular deviations from the exact icosahedral symmetry, usually observed at the diffraction patterns of quasicrystal alloys, are analyzed. It is shown that shifting, splitting and asymmetric broadening of reflections can be attributed to crystalline phases with the cubic symmetry very close to the icosahedral one (such pseudo-icosahedral cubic approximants may be called the Fibonacci crystals). The Fibonacci crystal is labelled as Fn+1/Fn>, if in this crystal the most intense vertex reflections have the Miller indices {0, Fn, Fn + 1} where Fi are the Fibonacci numbers (Fi = 1, 1, 2, 3, 5, 8, 13, 21, 34...). The deviations of x-ray and electron reflections from their icosahedral positions are calculated. The comparison with available experimental data shows that at least four different Fibonacci crystals have been observed in Al-Mn and Al-Mn-Si alloys : 2/1> (MnSi structure), 5/3> (03B1-Al-Mn-Si), 13/8>, and 34/21> with the lattice constants 4.6 Å, 12.6 Å, 33.1 Å, 86.6 Å respectively. It is interesting to note that there are no experimental evidences for the intermediate approximants 3/2>, 8/5> and 21/13>. The possible space groups of the Fibonacci crystals and their relationships with quasicrystallographic space groups are discussed. J. Phys. France 51 ( 1990) 2717-2732 1 er DÉCEMBRE 1990,","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"43 1","pages":"2717-2732"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510230271700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

2014 The regular deviations from the exact icosahedral symmetry, usually observed at the diffraction patterns of quasicrystal alloys, are analyzed. It is shown that shifting, splitting and asymmetric broadening of reflections can be attributed to crystalline phases with the cubic symmetry very close to the icosahedral one (such pseudo-icosahedral cubic approximants may be called the Fibonacci crystals). The Fibonacci crystal is labelled as Fn+1/Fn>, if in this crystal the most intense vertex reflections have the Miller indices {0, Fn, Fn + 1} where Fi are the Fibonacci numbers (Fi = 1, 1, 2, 3, 5, 8, 13, 21, 34...). The deviations of x-ray and electron reflections from their icosahedral positions are calculated. The comparison with available experimental data shows that at least four different Fibonacci crystals have been observed in Al-Mn and Al-Mn-Si alloys : 2/1> (MnSi structure), 5/3> (03B1-Al-Mn-Si), 13/8>, and 34/21> with the lattice constants 4.6 Å, 12.6 Å, 33.1 Å, 86.6 Å respectively. It is interesting to note that there are no experimental evidences for the intermediate approximants 3/2>, 8/5> and 21/13>. The possible space groups of the Fibonacci crystals and their relationships with quasicrystallographic space groups are discussed. J. Phys. France 51 ( 1990) 2717-2732 1 er DÉCEMBRE 1990,
准晶体结构中的立方近似
2014分析了准晶合金衍射图样中与精确二十面体对称的规律偏差。结果表明,反射的移位、分裂和不对称加宽可归因于立方对称非常接近二十面体的晶体相(这种伪二十面体立方近似可称为斐波那契晶体)。斐波那契晶体被标记为Fn+1/Fn>,如果在该晶体中最强烈的顶点反射具有米勒指数{0,Fn, Fn+1},其中Fi是斐波那契数(Fi = 1,1,2,3,5,8,13,21,34…)。计算了x射线和电子反射与二十面体位置的偏差。与现有实验数据的比较表明,在Al-Mn和Al-Mn- si合金中至少观察到四种不同的斐波那契晶体:2/1>(MnSi结构),5/3>(03B1-Al-Mn-Si), 13/8>和34/21>晶格常数分别为4.6 Å, 12.6 Å, 33.1 Å, 86.6 Å。有趣的是,没有实验证据表明中间近似值为3/2>, 8/5>和21/13& # x3E;。讨论了斐波那契晶体可能存在的空间群及其与准晶空间群的关系。期刊。法国51 (1990)2717-2732 1 er DÉCEMBRE 1990,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信