{"title":"Analysis of linearized elasticity models with point sources in weighted Sobolev spaces: applications in tissue contraction","authors":"W. Boon, F. Vermolen","doi":"10.1051/m2an/2023055","DOIUrl":null,"url":null,"abstract":"In order to model the contractive forces exerted by fibroblast cells in dermal tissue, we propose and analyze two modeling approaches under the assumption of linearized elasticity. The first approach introduces a collection of point forces on the boundary of the fibroblast whereas the second approach employs an isotropic stress point source in its center. We analyze the resulting partial differential equations in terms of weighted Sobolev spaces and identify the singular behavior of the respective solutions. Two finite element method approaches are proposed, one based on a direct application and another in which the singularity is subtracted and a correction field is computed. Finally, we confirm the validity of the modeling approach, demonstrate convergence of the numerical methods, and verify the analysis through the use of numerical experiments.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023055","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
In order to model the contractive forces exerted by fibroblast cells in dermal tissue, we propose and analyze two modeling approaches under the assumption of linearized elasticity. The first approach introduces a collection of point forces on the boundary of the fibroblast whereas the second approach employs an isotropic stress point source in its center. We analyze the resulting partial differential equations in terms of weighted Sobolev spaces and identify the singular behavior of the respective solutions. Two finite element method approaches are proposed, one based on a direct application and another in which the singularity is subtracted and a correction field is computed. Finally, we confirm the validity of the modeling approach, demonstrate convergence of the numerical methods, and verify the analysis through the use of numerical experiments.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.