{"title":"Impact of Surface Texture on Bifacial Silicon Heterojunction Solar Cell Carrier Loss","authors":"E. Tonita, C. Valdivia, K. Hinzer","doi":"10.1109/NUSOD52207.2021.9541421","DOIUrl":null,"url":null,"abstract":"We investigate the impact of surface texturing on current loss as a function of depth and wavelength in high efficiency bifacial silicon heterojunction solar cells operating at their maximum power output. We couple 3D ray tracing with TMM thin-film boundary conditions for optical simulations and solve Poisson’s drift-diffusion equations to calculate carrier recombination under both front and rear illumination. For front (rear) AM1.5G illumination at normal incidence, regular inverted pyramids out-perform planar surfaces and upright pyramid texture efficiencies by 17.1% rel. (17.9% rel.) and 1.4% rel. (1.0% rel.), respectively. Reduced carrier loss for inverted pyramid textures is calculated to be primarily due to a reflectivity decrease of 63% (76%) compared to planar surfaces which results in enhanced carrier-generation at depths further into the c-Si substrate. The benefit of inverted pyramidal light-trapping will be further enhanced when higher angles of incidence are considered, with angular performance particularly relevant for the rear-side.","PeriodicalId":6780,"journal":{"name":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"28 2 1","pages":"55-56"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD52207.2021.9541421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the impact of surface texturing on current loss as a function of depth and wavelength in high efficiency bifacial silicon heterojunction solar cells operating at their maximum power output. We couple 3D ray tracing with TMM thin-film boundary conditions for optical simulations and solve Poisson’s drift-diffusion equations to calculate carrier recombination under both front and rear illumination. For front (rear) AM1.5G illumination at normal incidence, regular inverted pyramids out-perform planar surfaces and upright pyramid texture efficiencies by 17.1% rel. (17.9% rel.) and 1.4% rel. (1.0% rel.), respectively. Reduced carrier loss for inverted pyramid textures is calculated to be primarily due to a reflectivity decrease of 63% (76%) compared to planar surfaces which results in enhanced carrier-generation at depths further into the c-Si substrate. The benefit of inverted pyramidal light-trapping will be further enhanced when higher angles of incidence are considered, with angular performance particularly relevant for the rear-side.