On the geometry of asymptotically flat manifolds

IF 2 1区 数学
Xiuxiong Chen, Yu Li
{"title":"On the geometry of asymptotically flat manifolds","authors":"Xiuxiong Chen, Yu Li","doi":"10.2140/gt.2021.25.2469","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the geometry of asymptotically flat manifolds with controlled holonomy. We show that any end of such manifold admits a refined torus fibration over an ALE manifold. In addition, we prove a Hitchin-Thorpe inequality for oriented Ricci-flat $4$-manifolds with curvature decay and controlled holonomy. As an application, we show that any complete asymptotically flat Ricci-flat metric on a $4$-manifold which is homeomorphic to $\\mathbb R^4$ must be isometric to the Euclidean or the Taub-NUT metric, provided that the tangent cone at infinity is not $\\mathbb R \\times \\mathbb R_+$.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.2469","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we investigate the geometry of asymptotically flat manifolds with controlled holonomy. We show that any end of such manifold admits a refined torus fibration over an ALE manifold. In addition, we prove a Hitchin-Thorpe inequality for oriented Ricci-flat $4$-manifolds with curvature decay and controlled holonomy. As an application, we show that any complete asymptotically flat Ricci-flat metric on a $4$-manifold which is homeomorphic to $\mathbb R^4$ must be isometric to the Euclidean or the Taub-NUT metric, provided that the tangent cone at infinity is not $\mathbb R \times \mathbb R_+$.
渐近平面流形的几何性质
本文研究了具有控制完整的渐近平面流形的几何性质。我们证明了这种流形的任何一端都允许在ALE流形上进行精细的环面振动。此外,我们证明了具有曲率衰减和控制完整的有向ricci -平坦$4$流形的一个Hitchin-Thorpe不等式。作为一个应用,我们证明了$4$流形上与$\mathbb R^4$同纯的任何完备渐近平坦ricci -平坦度规必须与欧几里得度规或Taub-NUT度规等距,只要无穷远处的切锥不是$\mathbb R \乘以$ mathbb R_+$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信