Some Cubic Transmuted Exponentiated Pareto-1 Distribution

IF 0.3 Q4 MATHEMATICS
Hussein Eledum
{"title":"Some Cubic Transmuted Exponentiated Pareto-1 Distribution","authors":"Hussein Eledum","doi":"10.3844/jmssp.2020.113.124","DOIUrl":null,"url":null,"abstract":"In this study, we introduce two new generalized versions of the Exponentiated Pareto-I distribution called (CTEP-I-G) and (CTEP-I-R). Statistical properties of the two distributions such as reliability function, hazard function, moments and moment generating function are studied. Models parameters are estimated by the maximum likelihood method. Finally, an application of CTEP-I-G and CTEP-I-R distributions to two real datasets and compared with some distributions based on exponentiated Pareto-I distribution is illustrated. The applications suggest that the CTEP-I-G performs better than CTEP-I-R.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"22 1","pages":"113-124"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2020.113.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we introduce two new generalized versions of the Exponentiated Pareto-I distribution called (CTEP-I-G) and (CTEP-I-R). Statistical properties of the two distributions such as reliability function, hazard function, moments and moment generating function are studied. Models parameters are estimated by the maximum likelihood method. Finally, an application of CTEP-I-G and CTEP-I-R distributions to two real datasets and compared with some distributions based on exponentiated Pareto-I distribution is illustrated. The applications suggest that the CTEP-I-G performs better than CTEP-I-R.
一类三次变幂Pareto-1分布
在这项研究中,我们引入了两个新的广义版本的指数帕累托分布,称为(CTEP-I-G)和(CTEP-I-R)。研究了两种分布的可靠性函数、危险函数、矩和矩生成函数的统计性质。采用极大似然法对模型参数进行估计。最后,给出了CTEP-I-G和CTEP-I-R分布在两个实际数据集上的应用,并与一些基于指数Pareto-I分布的分布进行了比较。应用表明,CTEP-I-G的性能优于CTEP-I-R。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信