Vortex Beam Optimization Design of Concentric Uniform Circular Array Antenna with Improved Array Factor

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Q. Feng, Yifeng Lin, Yushan Zheng, Long Li
{"title":"Vortex Beam Optimization Design of Concentric Uniform Circular Array Antenna with Improved Array Factor","authors":"Q. Feng, Yifeng Lin, Yushan Zheng, Long Li","doi":"10.47037/2021.aces.j.360702","DOIUrl":null,"url":null,"abstract":"In this paper, an improved array factor of the concentric uniform circular array (CUCA) antenna is proposed for the orbital angular momentum (OAM) vortex beam optimization design. From the perspective of the radiation pattern’s power conservation principle, a correction factor is introduced to the conventional array factor of CUCA. Then, based on the improved array factor, by adjusting the rings’ radii parameters of the CUCA, we optimize the vortex beam’s sidelobe level through the generic algorithm (GA). Two different CUCA antenna model are calculated as examples to further illustrate the effectiveness of the improved array factor. Subsequently, an electromagnetic simulation model of two rings CUCA antenna is built at C band for generating low sidelobe vortex beam carrying OAM mode. The electromagnetic simulation model of the designed CUCA antenna is also fabricated and measured. The corresponding antenna far-field vortex beam radiation pattern and near-field vortex wave electric field distributions are measured. The simulation results and the measurement results are in good agreement. The proposed designs of antenna and OAM vortex beam regulation are expected to be used for 5G and 6G communications applications","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360702","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, an improved array factor of the concentric uniform circular array (CUCA) antenna is proposed for the orbital angular momentum (OAM) vortex beam optimization design. From the perspective of the radiation pattern’s power conservation principle, a correction factor is introduced to the conventional array factor of CUCA. Then, based on the improved array factor, by adjusting the rings’ radii parameters of the CUCA, we optimize the vortex beam’s sidelobe level through the generic algorithm (GA). Two different CUCA antenna model are calculated as examples to further illustrate the effectiveness of the improved array factor. Subsequently, an electromagnetic simulation model of two rings CUCA antenna is built at C band for generating low sidelobe vortex beam carrying OAM mode. The electromagnetic simulation model of the designed CUCA antenna is also fabricated and measured. The corresponding antenna far-field vortex beam radiation pattern and near-field vortex wave electric field distributions are measured. The simulation results and the measurement results are in good agreement. The proposed designs of antenna and OAM vortex beam regulation are expected to be used for 5G and 6G communications applications
改进阵列系数的同心均匀圆阵列天线涡旋波束优化设计
针对轨道角动量涡旋波束的优化设计,提出了一种改进的同心圆均匀阵(CUCA)天线阵列因子。从辐射方向图的功率守恒原理出发,在CUCA的常规阵列因子中引入校正因子。然后,基于改进的阵列因子,通过调整CUCA环的半径参数,通过通用算法(GA)优化涡旋光束的旁瓣电平。以两种不同的CUCA天线模型为例,进一步说明了改进阵列因子的有效性。随后,建立了C波段双环CUCA天线的电磁仿真模型,用于产生携带OAM模式的低旁瓣涡旋波束。建立了所设计的CUCA天线的电磁仿真模型并进行了测量。测量了天线远场涡束辐射方向图和近场涡波电场分布。仿真结果与实测结果吻合较好。拟议的天线和OAM涡旋波束调节设计预计将用于5G和6G通信应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信