Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients

A. Cameron, T. Yuan, M. Trenti, D. Nicholls, L. Kewley
{"title":"Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients","authors":"A. Cameron, T. Yuan, M. Trenti, D. Nicholls, L. Kewley","doi":"10.1093/mnras/staa3757","DOIUrl":null,"url":null,"abstract":"We investigate how HII region temperature structure assumptions affect \"direct-method\" spatially-resolved metallicity observations using multispecies auroral lines in a galaxy from the SAMI Galaxy Survey. SAMI609396B, at redshift $z=0.018$, is a low-mass galaxy in a minor merger with intense star formation, analogous to conditions at high redshifts. We use three methods to derive direct metallicities and compare with strong-line diagnostics. The spatial metallicity trends show significant differences among the three direct methods. Our first method is based on the commonly used electron temperature $T_e$([OIII]) from the [OIII]$\\lambda$4363 auroral line and a traditional $T_e$([OII]) -- $T_e$([OIII]) calibration. The second method applies a recent empirical correction to the O$^+$ abundance from the [OIII]/[OII] strong-line ratio. The third method infers the $T_e$([OII]) from the [SII]$\\lambda\\lambda$4069,76 auroral lines. The first method favours a positive metallicity gradient along SAMI609396B, whereas the second and third methods yield flattened gradients. Strong-line diagnostics produce mostly flat gradients, albeit with unquantified contamination from shocked regions. We conclude that overlooked assumptions about the internal temperature structure of HII regions in the direct method can lead to large discrepancies in metallicity gradient studies. Our detailed analysis of SAMI609396B underlines that high-accuracy metallicity gradient measurements require a wide array of emission lines and improved spatial resolutions in order to properly constrain excitation sources, physical conditions, and temperature structures of the emitting gas. Integral-field spectroscopic studies with future facilities such as JWST/NIRSpec and ground-based ELTs will be crucial in minimising systematic effects on measured gradients in distant galaxies.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate how HII region temperature structure assumptions affect "direct-method" spatially-resolved metallicity observations using multispecies auroral lines in a galaxy from the SAMI Galaxy Survey. SAMI609396B, at redshift $z=0.018$, is a low-mass galaxy in a minor merger with intense star formation, analogous to conditions at high redshifts. We use three methods to derive direct metallicities and compare with strong-line diagnostics. The spatial metallicity trends show significant differences among the three direct methods. Our first method is based on the commonly used electron temperature $T_e$([OIII]) from the [OIII]$\lambda$4363 auroral line and a traditional $T_e$([OII]) -- $T_e$([OIII]) calibration. The second method applies a recent empirical correction to the O$^+$ abundance from the [OIII]/[OII] strong-line ratio. The third method infers the $T_e$([OII]) from the [SII]$\lambda\lambda$4069,76 auroral lines. The first method favours a positive metallicity gradient along SAMI609396B, whereas the second and third methods yield flattened gradients. Strong-line diagnostics produce mostly flat gradients, albeit with unquantified contamination from shocked regions. We conclude that overlooked assumptions about the internal temperature structure of HII regions in the direct method can lead to large discrepancies in metallicity gradient studies. Our detailed analysis of SAMI609396B underlines that high-accuracy metallicity gradient measurements require a wide array of emission lines and improved spatial resolutions in order to properly constrain excitation sources, physical conditions, and temperature structures of the emitting gas. Integral-field spectroscopic studies with future facilities such as JWST/NIRSpec and ground-based ELTs will be crucial in minimising systematic effects on measured gradients in distant galaxies.
高红移模拟局域星系中空间分辨直接法金属丰度:温度结构对金属丰度梯度的影响
我们研究了HII区域温度结构假设如何影响SAMI星系调查中一个星系的多物种极光线的“直接方法”空间分辨金属丰度观测。SAMI609396B,在红移$z=0.018$处,是一个低质量星系,在与强烈恒星形成的小合并中,类似于高红移的条件。我们使用三种方法来推导直接金属丰度,并与强线诊断进行比较。三种直接方法的空间金属丰度趋势差异显著。我们的第一种方法是基于来自[OIII]$\lambda$4363极光线的常用电子温度$T_e$([OIII])和传统的$T_e$([OII]) - $T_e$([OIII])校准。第二种方法对来自[OIII]/[OII]强线比率的O$^+$丰度进行了最近的经验修正。第三个方法从[SII]$\lambda\lambda$4069,76极光线推断$T_e$([OII])。第一种方法有利于沿着SAMI609396B的正金属度梯度,而第二和第三种方法产生平坦的梯度。强线诊断产生的大多是平坦的梯度,尽管有来自受冲击地区的未量化污染。我们的结论是,在直接方法中忽略了对HII区域内部温度结构的假设,可能导致金属丰度梯度研究中的巨大差异。我们对SAMI609396B的详细分析表明,高精度的金属丰度梯度测量需要广泛的发射线阵列和提高的空间分辨率,以适当地约束激发源、物理条件和发射气体的温度结构。利用JWST/NIRSpec和地基elt等未来设施进行积分场光谱研究,对于最小化对遥远星系测量梯度的系统影响至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信