Human Activity Recognition Using Mixture of Gaussians and Pair-wise Oriented Local Binary Pattern

M. Shofiuddin, M. Nizamuddin, Md. Saiful Islam, Tanveer Ahsan
{"title":"Human Activity Recognition Using Mixture of Gaussians and Pair-wise Oriented Local Binary Pattern","authors":"M. Shofiuddin, M. Nizamuddin, Md. Saiful Islam, Tanveer Ahsan","doi":"10.1109/ICISET.2018.8745653","DOIUrl":null,"url":null,"abstract":"Tracking and recognizing human activities from video is a very challenging task in the field of Computer Vision. In this paper, we aim to recognize human activities by coping with the existing challenges. At first, the background and the foreground of images in videos are detected using the mixture of Gaussian distributions and the binary silhouette images are obtained. We propose a feature descriptor named Pair-wise Oriented Local Binary Pattern (POLBP) and an improved version of DLBP feature descriptor for images. POLBP is capable of encoding more information than intensity differences of LBP by incorporating orientation information with the intensity difference. This Pair-wise Oriented Local Binary Pattern (POLBP) extracts local orientation information from binary silhouette images. These feature vectors are sent to Support Vector Machine (SVM) classifier for classification. The proposed method has been used in the area of Human Activity Recognition (HAR) and the result of recognition rate is very encouraging.","PeriodicalId":6608,"journal":{"name":"2018 International Conference on Innovations in Science, Engineering and Technology (ICISET)","volume":"1 1","pages":"507-512"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Innovations in Science, Engineering and Technology (ICISET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISET.2018.8745653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tracking and recognizing human activities from video is a very challenging task in the field of Computer Vision. In this paper, we aim to recognize human activities by coping with the existing challenges. At first, the background and the foreground of images in videos are detected using the mixture of Gaussian distributions and the binary silhouette images are obtained. We propose a feature descriptor named Pair-wise Oriented Local Binary Pattern (POLBP) and an improved version of DLBP feature descriptor for images. POLBP is capable of encoding more information than intensity differences of LBP by incorporating orientation information with the intensity difference. This Pair-wise Oriented Local Binary Pattern (POLBP) extracts local orientation information from binary silhouette images. These feature vectors are sent to Support Vector Machine (SVM) classifier for classification. The proposed method has been used in the area of Human Activity Recognition (HAR) and the result of recognition rate is very encouraging.
混合高斯和面向成对的局部二值模式的人体活动识别
从视频中跟踪和识别人类活动是计算机视觉领域中一个非常具有挑战性的任务。在本文中,我们旨在通过应对现有挑战来认识人类活动。首先,利用混合高斯分布检测视频图像的背景和前景,得到二值轮廓图像;我们提出了一个特征描述符,命名为成对定向局部二进制模式(POLBP)和DLBP图像特征描述符的改进版本。POLBP通过将方向信息与强度差结合,能够编码比LBP更多的信息。这种两两定向局部二值模式(POLBP)从二值轮廓图像中提取局部方向信息。这些特征向量被发送给支持向量机(SVM)分类器进行分类。该方法已在人体活动识别(HAR)领域得到应用,识别率取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信