Z. Pribulová, M. Marcin, J. Kačmarčík, S. Gabáni, K. Flachbart, N. Shitsevalova, T. Mori, N. Sluchanko, M. Anisimov, V. Cambel, J. Soltýs, C. Marcenat, T. Klein, P. Samuely
{"title":"Defect-induced weak collective pinning in superconducting YB6 crystals","authors":"Z. Pribulová, M. Marcin, J. Kačmarčík, S. Gabáni, K. Flachbart, N. Shitsevalova, T. Mori, N. Sluchanko, M. Anisimov, V. Cambel, J. Soltýs, C. Marcenat, T. Klein, P. Samuely","doi":"10.1088/2515-7639/aceeb7","DOIUrl":null,"url":null,"abstract":"In a previous study (2017 Phys. Rev. B 96 144501), a strong variation in the superconducting transition temperature T c of YB6 differing by a factor of two has been explained by a change in the density of yttrium and boron vacancies tuning the electron–phonon interaction. Here, by using an array of miniature Hall probes, we address the penetration of the magnetic field, pinning, and critical current density on a series of YB6 single crystals with T c variation between 4.25 and 7.35 K. The analysis of the superconducting and normal-state specific heat characteristics allowed us to determine T c and the stoichiometry of our samples. We observed almost no pinning in the most stoichiometric YB6 crystal with the lowest T c. Upon increasing the number of vacancies weak pinning appears, and the critical current density is enhanced following the increased transition temperature in a linear variation. We argue that such an increase is, within weak collective pinning theory, consistent with the increasing number of vacancies that serve as pinning centers.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"25 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/aceeb7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In a previous study (2017 Phys. Rev. B 96 144501), a strong variation in the superconducting transition temperature T c of YB6 differing by a factor of two has been explained by a change in the density of yttrium and boron vacancies tuning the electron–phonon interaction. Here, by using an array of miniature Hall probes, we address the penetration of the magnetic field, pinning, and critical current density on a series of YB6 single crystals with T c variation between 4.25 and 7.35 K. The analysis of the superconducting and normal-state specific heat characteristics allowed us to determine T c and the stoichiometry of our samples. We observed almost no pinning in the most stoichiometric YB6 crystal with the lowest T c. Upon increasing the number of vacancies weak pinning appears, and the critical current density is enhanced following the increased transition temperature in a linear variation. We argue that such an increase is, within weak collective pinning theory, consistent with the increasing number of vacancies that serve as pinning centers.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.