A Brief Survey on the Inverse Galois Problem

Bigyan Adhikari, T. Nepal
{"title":"A Brief Survey on the Inverse Galois Problem","authors":"Bigyan Adhikari, T. Nepal","doi":"10.3126/jist.v27i1.40543","DOIUrl":null,"url":null,"abstract":"Inverse Galois problem (IGP) states whether any finite group is realizable as a Galois group over the field K. It is the question of the structure and representation of the Galois group and also questions its epimorphic images. So, it is called an inverse Galois problem. For K=ℚ (the field of rational number), it is called a classical inverse Galois problem (CIGP). This paper reviews the positive answer to the classical inverse Galois problem (CIGP) for all finite abelian groups and some finite non-abelian solvable groups. We also discuss this problem (CIGP) for some finite non-solvable groups in this paper. This problem still remains to solve, but if we find the true value of the statement ‘All subgroups of order m of the symmetric group (Sm) for all m are realizable as Galois group over ℚ’ then its truth value gives the answer of CIGP. We check this statement for m=1,2,3,4 and 5 in this paper, where we get that this statement is true. If this statement is true, then CIGP has a positive answer. But if this statement is false then CIGP has a negative answer.","PeriodicalId":16072,"journal":{"name":"Journal of Hunan Institute of Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hunan Institute of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jist.v27i1.40543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse Galois problem (IGP) states whether any finite group is realizable as a Galois group over the field K. It is the question of the structure and representation of the Galois group and also questions its epimorphic images. So, it is called an inverse Galois problem. For K=ℚ (the field of rational number), it is called a classical inverse Galois problem (CIGP). This paper reviews the positive answer to the classical inverse Galois problem (CIGP) for all finite abelian groups and some finite non-abelian solvable groups. We also discuss this problem (CIGP) for some finite non-solvable groups in this paper. This problem still remains to solve, but if we find the true value of the statement ‘All subgroups of order m of the symmetric group (Sm) for all m are realizable as Galois group over ℚ’ then its truth value gives the answer of CIGP. We check this statement for m=1,2,3,4 and 5 in this paper, where we get that this statement is true. If this statement is true, then CIGP has a positive answer. But if this statement is false then CIGP has a negative answer.
逆伽罗瓦问题综述
逆伽罗瓦问题(Inverse Galois problem, IGP)是指在域k上是否有有限群可以作为伽罗瓦群实现的问题,它是关于伽罗瓦群的结构和表示的问题,也是关于伽罗瓦群的外胚象的问题。因此,它被称为逆伽罗瓦问题。对于K= π(有理数域),称为经典伽罗瓦逆问题(CIGP)。本文综述了所有有限阿贝尔群和一些有限非阿贝尔可解群的经典伽罗瓦逆问题的正解。本文还讨论了一些有限不可解群的这一问题。这个问题还有待解决,但是如果我们找到命题“所有m的对称群(Sm)的所有m阶子群都可实现为π上的伽罗瓦群”的真值,那么它的真值就给出了CIGP的答案。在本文中,我们对m=1,2,3,4和5的情况进行检验,我们得到这个表述是正确的。如果这个说法是正确的,那么CIGP有一个肯定的答案。但是如果这个陈述是假的,那么CIGP有一个否定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信