Honey Adulteration Detection using Hyperspectral Imaging and Machine Learning

Mokhtar A. Al-Awadhi, R. Deshmukh
{"title":"Honey Adulteration Detection using Hyperspectral Imaging and Machine Learning","authors":"Mokhtar A. Al-Awadhi, R. Deshmukh","doi":"10.1109/AISP53593.2022.9760585","DOIUrl":null,"url":null,"abstract":"This paper aims to develop a machine learning-based system for automatically detecting honey adulteration with sugar syrup, based on honey hyperspectral imaging data. First, the floral source of a honey sample is classified by a botanical origin identification subsystem. Then, the sugar syrup adulteration is identified, and its concentration is quantified by an adulteration detection subsystem. Both subsystems consist of two steps. The first step involves extracting relevant features from the honey sample using Linear Discriminant Analysis (LDA). In the second step, we utilize the K-Nearest Neighbors (KNN) model to classify the honey botanical origin in the first subsystem and identify the adulteration level in the second subsystem. We assess the proposed system performance on a public honey hyperspectral image dataset. The result indicates that the proposed system can detect adulteration in honey with an overall cross-validation accuracy of 96.39%, making it an appropriate alternative to the current chemical-based detection methods.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"60 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper aims to develop a machine learning-based system for automatically detecting honey adulteration with sugar syrup, based on honey hyperspectral imaging data. First, the floral source of a honey sample is classified by a botanical origin identification subsystem. Then, the sugar syrup adulteration is identified, and its concentration is quantified by an adulteration detection subsystem. Both subsystems consist of two steps. The first step involves extracting relevant features from the honey sample using Linear Discriminant Analysis (LDA). In the second step, we utilize the K-Nearest Neighbors (KNN) model to classify the honey botanical origin in the first subsystem and identify the adulteration level in the second subsystem. We assess the proposed system performance on a public honey hyperspectral image dataset. The result indicates that the proposed system can detect adulteration in honey with an overall cross-validation accuracy of 96.39%, making it an appropriate alternative to the current chemical-based detection methods.
利用高光谱成像和机器学习检测蜂蜜掺假
本文旨在基于蜂蜜高光谱成像数据,开发一种基于机器学习的蜂蜜糖浆掺假自动检测系统。首先,通过植物来源识别子系统对蜂蜜样品的花源进行分类。然后,对糖浆的掺假进行识别,并通过掺假检测子系统对其浓度进行量化。这两个子系统都由两个步骤组成。第一步是使用线性判别分析(LDA)从蜂蜜样本中提取相关特征。在第二步中,我们利用k近邻(KNN)模型对第一个子系统中的蜂蜜植物来源进行分类,并识别第二个子系统中的掺假水平。我们在一个公开的蜂蜜高光谱图像数据集上评估了所提出的系统性能。结果表明,该系统检测蜂蜜中掺假的总体交叉验证准确率为96.39%,可替代现有的基于化学的检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信