Cylindrical flow swirler with extended blade chord

Andrey L. Zuykov
{"title":"Cylindrical flow swirler with extended blade chord","authors":"Andrey L. Zuykov","doi":"10.22227/2305-5502.2023.2.2","DOIUrl":null,"url":null,"abstract":"Introduction. Development of vortex apparatuses — devices for swirling flows of liquids and gases — remains an urgent scientific and engineering task. The design of counter vortex damper flow swirling apparatus at the idle water outlet of Belorechenskaya hydroelectric power plant (HPP) is considered. The purpose of the study is to develop an effective counter vortex damper of excess kinetic energy of water flow. Materials and methods. Analytical methods of classical hydro-mechanics are used. The conceptual basis of the research is the fundamental equality of the geometric characteristic of the vortex apparatus by Abramovich (the Abramovich number) to the Chigier-Beer swirl number. Results. It has been found that geometrical characteristic of the cylindrical vane swirler does not depend on radius of exit edges of blades which swirl the flow, but depends on the angle of bevel of blades at this radius. It allows, according to fundamental equality of Abramovich and Chigier-Beer numbers, either to shift the blades along the swirl chamber radius or to perform them with elongated chord, leaving the hydraulic characteristics of the swirl apparatus and swirled flow unchanged, preserving the bevel angle. Lengthening the chord of the vortex apparatus blades increases the reliability and quality of formation of the swirling flow. It has been proved on the base of differential equation describing the flow lines in the cylindrical swirl chamber that chord of a swirl apparatus prolonged blade flowing smoothly around the flow should have a shape of a logarithmic spiral. It is shown that the vortex apparatus made in the form of a vane system of logarithmic spirals forms a flow with potential rotation superimposed on the potential flow. Conclusions. The design of counter vortex damper of flow energy at the outlet of Belorechenskaya HPP with a system of blades in the form of logarithmic spirals has been analyzed. It is offered to recommend the considered design as a typical one for hydraulic units of medium head.","PeriodicalId":30543,"journal":{"name":"Stroitel''stvo Nauka i Obrazovanie","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stroitel''stvo Nauka i Obrazovanie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22227/2305-5502.2023.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction. Development of vortex apparatuses — devices for swirling flows of liquids and gases — remains an urgent scientific and engineering task. The design of counter vortex damper flow swirling apparatus at the idle water outlet of Belorechenskaya hydroelectric power plant (HPP) is considered. The purpose of the study is to develop an effective counter vortex damper of excess kinetic energy of water flow. Materials and methods. Analytical methods of classical hydro-mechanics are used. The conceptual basis of the research is the fundamental equality of the geometric characteristic of the vortex apparatus by Abramovich (the Abramovich number) to the Chigier-Beer swirl number. Results. It has been found that geometrical characteristic of the cylindrical vane swirler does not depend on radius of exit edges of blades which swirl the flow, but depends on the angle of bevel of blades at this radius. It allows, according to fundamental equality of Abramovich and Chigier-Beer numbers, either to shift the blades along the swirl chamber radius or to perform them with elongated chord, leaving the hydraulic characteristics of the swirl apparatus and swirled flow unchanged, preserving the bevel angle. Lengthening the chord of the vortex apparatus blades increases the reliability and quality of formation of the swirling flow. It has been proved on the base of differential equation describing the flow lines in the cylindrical swirl chamber that chord of a swirl apparatus prolonged blade flowing smoothly around the flow should have a shape of a logarithmic spiral. It is shown that the vortex apparatus made in the form of a vane system of logarithmic spirals forms a flow with potential rotation superimposed on the potential flow. Conclusions. The design of counter vortex damper of flow energy at the outlet of Belorechenskaya HPP with a system of blades in the form of logarithmic spirals has been analyzed. It is offered to recommend the considered design as a typical one for hydraulic units of medium head.
带扩展叶弦的圆柱流旋流器
介绍。旋涡装置-液体和气体旋转流动的装置-的发展仍然是一个紧迫的科学和工程任务。研究了别洛列钦斯卡亚水电站闲水口反涡阻尼器旋流装置的设计。研究的目的是开发一种有效的水流过剩动能反涡阻尼器。材料和方法。采用经典流体力学的分析方法。本研究的概念基础是涡旋装置的几何特征(即阿布拉莫维奇数)与Chigier-Beer旋流数基本相等。结果。研究发现,圆柱叶片旋流器的几何特性不取决于旋流叶片出口边缘的半径,而取决于该半径处叶片的斜角。根据Abramovich数和Chigier-Beer数的基本等式,它允许沿旋流室半径移动叶片或使用长弦进行叶片移动,从而保持旋流装置和旋流的水力特性不变,并保留斜角。延长旋涡装置叶片的弦可以提高旋涡流形成的可靠性和质量。在描述圆柱形旋流腔内流动线的微分方程的基础上,证明了旋流装置延长叶片绕流平滑流动的弦应呈对数螺旋形状。结果表明,以对数螺旋叶片系统形式制成的旋涡装置形成了叠加在势流上的势旋流。结论。分析了对数螺旋叶片系统下Belorechenskaya HPP出口流能反涡阻尼器的设计。对中水头液压装置的典型设计提出了推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
9
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信