Multi-SOMs for classification

Q3 Computer Science
N. Goerke, F. Kintzler, Bernd Brüggemann
{"title":"Multi-SOMs for classification","authors":"N. Goerke, F. Kintzler, Bernd Brüggemann","doi":"10.1504/IJISTA.2007.012485","DOIUrl":null,"url":null,"abstract":"We propose a method to use the classification capabilities of self organising neural networks to extract symbolic information from raw data. The Multi-SOM (M-SOM) approach is a variant of Self Organising Maps (SOM). Multi-SOMS consist of a set of partner SOMs, trained simultaneously and in concurrence to each other, to adapt to different classes. The trained M-SOM transforms the non-linear time series of a strange attractor into a stream of symbols, adequate for further classification or for control tasks. We are convinced, that using the Multi-SOM approch for classification, gives a variety of new applications.","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"2008 1","pages":"99-107"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJISTA.2007.012485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a method to use the classification capabilities of self organising neural networks to extract symbolic information from raw data. The Multi-SOM (M-SOM) approach is a variant of Self Organising Maps (SOM). Multi-SOMS consist of a set of partner SOMs, trained simultaneously and in concurrence to each other, to adapt to different classes. The trained M-SOM transforms the non-linear time series of a strange attractor into a stream of symbols, adequate for further classification or for control tasks. We are convinced, that using the Multi-SOM approch for classification, gives a variety of new applications.
用于分类的多个soms
我们提出了一种利用自组织神经网络的分类能力从原始数据中提取符号信息的方法。Multi-SOM (M-SOM)方法是自组织映射(SOM)的一种变体。Multi-SOMS由一组伙伴SOMs组成,这些伙伴SOMs彼此同时或并发训练,以适应不同的类别。经过训练的M-SOM将奇异吸引子的非线性时间序列转换为符号流,足以进行进一步分类或控制任务。我们相信,使用Multi-SOM方法进行分类,可以提供各种新的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
期刊介绍: Intelligent systems refer broadly to computer embedded or controlled systems, machines and devices that possess a certain degree of intelligence. IJISTA, a peer-reviewed double-blind refereed journal, publishes original papers featuring innovative and practical technologies related to the design and development of intelligent systems. Its coverage also includes papers on intelligent systems applications in areas such as manufacturing, bioengineering, agriculture, services, home automation and appliances, medical robots and robotic rehabilitations, space exploration, etc. Topics covered include: -Robotics and mechatronics technologies- Artificial intelligence and knowledge based systems technologies- Real-time computing and its algorithms- Embedded systems technologies- Actuators and sensors- Mico/nano technologies- Sensing and multiple sensor fusion- Machine vision, image processing, pattern recognition and speech recognition and synthesis- Motion/force sensing and control- Intelligent product design, configuration and evaluation- Real time learning and machine behaviours- Fault detection, fault analysis and diagnostics- Digital communications and mobile computing- CAD and object oriented simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信