A Comparative Study of Estimating Road Surface Condition Using Support Vector Machine and Deep Neural Networ

Dae Jung Kim, Jin Sung Kim, Seung-Hi Lee, C. Chung
{"title":"A Comparative Study of Estimating Road Surface Condition Using Support Vector Machine and Deep Neural Networ","authors":"Dae Jung Kim, Jin Sung Kim, Seung-Hi Lee, C. Chung","doi":"10.1109/ITSC.2019.8916965","DOIUrl":null,"url":null,"abstract":"In this paper, we present a comparative study of two machine learning methods to estimate the road surface condition without directly estimating tire-road friction coefficient. It is well known that using either a vehicle model-based approach or an end-to-end artificial intelligent method is not satisfactory to estimate the tire-road friction coefficient due to sensor noise, parameter uncertainty, and disturbances. To cope with this problem, three feature vectors obtained based on the vehicle dynamics are utilized for support vector machine (SVM) and deep neural network (DNN) with a time-window approach. The effectiveness of the proposed method is verified using experimental data obtained with a test vehicle on proving grounds. From the experimental study, we observed that the road surface condition estimation using DNN is superior to that using SVM.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"2 1","pages":"1066-1071"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8916965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present a comparative study of two machine learning methods to estimate the road surface condition without directly estimating tire-road friction coefficient. It is well known that using either a vehicle model-based approach or an end-to-end artificial intelligent method is not satisfactory to estimate the tire-road friction coefficient due to sensor noise, parameter uncertainty, and disturbances. To cope with this problem, three feature vectors obtained based on the vehicle dynamics are utilized for support vector machine (SVM) and deep neural network (DNN) with a time-window approach. The effectiveness of the proposed method is verified using experimental data obtained with a test vehicle on proving grounds. From the experimental study, we observed that the road surface condition estimation using DNN is superior to that using SVM.
基于支持向量机和深度神经网络的路面状况估计的比较研究
在本文中,我们提出了两种机器学习方法的比较研究,在不直接估计轮胎-道路摩擦系数的情况下估计路面状况。众所周知,由于传感器噪声、参数不确定性和干扰,使用基于车辆模型的方法或端到端人工智能方法都不能令人满意地估计轮胎-道路摩擦系数。为了解决这一问题,将基于车辆动力学获得的三个特征向量分别用于支持向量机(SVM)和深度神经网络(DNN),并采用时间窗方法。利用试验场试验车辆的试验数据验证了该方法的有效性。从实验研究中,我们观察到使用DNN的路面状况估计优于使用SVM的路面状况估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信