Continuous $\beta$ function for the SU(3) gauge systems with two and twelve fundamental flavors

A. Hasenfratz, O. Witzel
{"title":"Continuous $\\beta$ function for the SU(3) gauge systems with two and twelve fundamental flavors","authors":"A. Hasenfratz, O. Witzel","doi":"10.22323/1.363.0094","DOIUrl":null,"url":null,"abstract":"The gradient flow transformation can be interpreted as continuous real-space renormalization group transformation if a coarse-graining step is incorporated as part of calculating expectation values. The method allows to predict critical properties of strongly coupled systems including the renormalization group $\\beta$ function and anomalous dimensions at nonperturbative fixed points. In this contribution we discuss a new analysis of the continuous renormalization group $\\beta$ function for $N_f=2$ and $N_f=12$ fundamental flavors in SU(3) gauge theories based on this method. We follow the approach developed and tested for the $N_f=2$ system in arXiv:1910.06408. Here we present further information on the analysis, emphasizing the robustness and intuitive features of the continuous $\\beta$ function calculation. We also discuss the applicability of the continuous $\\beta$ function calculation in conformal systems, extending the possible phase diagram to include a 4-fermion interaction. The numerical analysis for $N_f=12$ uses the same set of ensembles that was generated and analyzed for the step scaling function in arXiv:1909.05842. The new analysis uses volumes with $L \\ge 20$ and determines the $\\beta$ function in the $c=0$ gradient flow renormalization scheme. The continuous $\\beta$ function predicts the existence of a conformal fixed point and is consistent between different operators. Although determinations of the step scaling and continuous $\\beta$ function use different renormalization schemes, they both predict the existence of a conformal fixed point around $g^2\\sim 6$.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The gradient flow transformation can be interpreted as continuous real-space renormalization group transformation if a coarse-graining step is incorporated as part of calculating expectation values. The method allows to predict critical properties of strongly coupled systems including the renormalization group $\beta$ function and anomalous dimensions at nonperturbative fixed points. In this contribution we discuss a new analysis of the continuous renormalization group $\beta$ function for $N_f=2$ and $N_f=12$ fundamental flavors in SU(3) gauge theories based on this method. We follow the approach developed and tested for the $N_f=2$ system in arXiv:1910.06408. Here we present further information on the analysis, emphasizing the robustness and intuitive features of the continuous $\beta$ function calculation. We also discuss the applicability of the continuous $\beta$ function calculation in conformal systems, extending the possible phase diagram to include a 4-fermion interaction. The numerical analysis for $N_f=12$ uses the same set of ensembles that was generated and analyzed for the step scaling function in arXiv:1909.05842. The new analysis uses volumes with $L \ge 20$ and determines the $\beta$ function in the $c=0$ gradient flow renormalization scheme. The continuous $\beta$ function predicts the existence of a conformal fixed point and is consistent between different operators. Although determinations of the step scaling and continuous $\beta$ function use different renormalization schemes, they both predict the existence of a conformal fixed point around $g^2\sim 6$.
具有两个和十二个基本风味的SU(3)计量系统的连续$\beta$函数
如果在计算期望值的过程中加入粗粒度步骤,则梯度流变换可以解释为连续的实空间重整化群变换。该方法可以预测强耦合系统的关键性质,包括重整化群$\beta$函数和非摄动不动点的异常维数。在这篇文章中,我们讨论了基于这种方法的SU(3)规范理论中$N_f=2$和$N_f=12$基本口味的连续重整化群$\beta$函数的新分析。我们遵循arXiv:1910.06408中为$N_f=2$系统开发和测试的方法。在这里,我们提供进一步的分析信息,强调连续$\beta$函数计算的鲁棒性和直观特征。我们还讨论了连续$\beta$函数计算在共形系统中的适用性,扩展了可能的相图以包括4-费米子相互作用。对$N_f=12$的数值分析使用与arXiv:1909.05842中为阶跃缩放函数生成和分析的集合相同。新的分析使用$L \ge 20$的体积,并确定$c=0$梯度流重整方案中的$\beta$函数。连续的$\beta$函数预测了保形不动点的存在,并且在不同的算子之间是一致的。虽然步进缩放和连续$\beta$函数的确定使用不同的重整化方案,但它们都预测$g^2\sim 6$周围存在保形不动点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信