Asymptotic Properties of Neural Network Sieve Estimators.

IF 1.4 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Canadian Journal of Human Sexuality Pub Date : 2023-01-01 Epub Date: 2023-05-13 DOI:10.1080/10485252.2023.2209218
Xiaoxi Shen, Chang Jiang, Lyudamila Sakhanenko, Qing Lu
{"title":"Asymptotic Properties of Neural Network Sieve Estimators.","authors":"Xiaoxi Shen, Chang Jiang, Lyudamila Sakhanenko, Qing Lu","doi":"10.1080/10485252.2023.2209218","DOIUrl":null,"url":null,"abstract":"<p><p>Neural networks have become one of the most popularly used methods in machine learning and artificial intelligence. Due to the universal approximation theorem (Hornik et al., 1989), a neural network with one hidden layer can approximate any continuous function on compact support as long as the number of hidden units is sufficiently large. Statistically, a neural network can be classified into a nonlinear regression framework. However, if we consider it parametrically, due to the unidentifiability of the parameters, it is difficult to derive its asymptotic properties. Instead, we consider the estimation problem in a nonparametric regression framework and use the results from sieve estimation to establish the consistency, the rates of convergence and the asymptotic normality of the neural network estimators. We also illustrate the validity of the theories via simulations.</p>","PeriodicalId":51789,"journal":{"name":"Canadian Journal of Human Sexuality","volume":"9 1","pages":"839-868"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Human Sexuality","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2023.2209218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Neural networks have become one of the most popularly used methods in machine learning and artificial intelligence. Due to the universal approximation theorem (Hornik et al., 1989), a neural network with one hidden layer can approximate any continuous function on compact support as long as the number of hidden units is sufficiently large. Statistically, a neural network can be classified into a nonlinear regression framework. However, if we consider it parametrically, due to the unidentifiability of the parameters, it is difficult to derive its asymptotic properties. Instead, we consider the estimation problem in a nonparametric regression framework and use the results from sieve estimation to establish the consistency, the rates of convergence and the asymptotic normality of the neural network estimators. We also illustrate the validity of the theories via simulations.

神经网络筛估计器的渐近特性
神经网络已成为机器学习和人工智能领域最常用的方法之一。根据普遍逼近定理(Hornik 等人,1989 年),只要隐藏单元的数量足够多,一个有一个隐藏层的神经网络就能逼近紧凑支撑上的任何连续函数。从统计学角度看,神经网络可归类为非线性回归框架。然而,如果我们从参数角度考虑,由于参数的不可识别性,很难推导出其渐近特性。相反,我们在非参数回归框架下考虑估计问题,并利用筛子估计的结果来确定神经网络估计器的一致性、收敛率和渐近正态性。我们还通过模拟来说明理论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Canadian Journal of Human Sexuality
Canadian Journal of Human Sexuality PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
1.90
自引率
21.40%
发文量
36
期刊介绍: The Canadian Journal of Human Sexuality (CJHS) is a quarterly peer-reviewed academic journal focusing on the medical, psychological, social, and educational aspects of human sexuality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信