{"title":"Using High Resolution Images from UAV and Satellite Remote Sensing for Best Management Practice Analyses","authors":"B. Yang, Susanna T. Y. Tong, R. Fan","doi":"10.3808/jei.202000433","DOIUrl":null,"url":null,"abstract":"Best Management Practices (BMPs) are commonly adopted to ameliorate the quality of runoff and reduce the frequency and intensity of flash floods in urban areas. To date, many of the BMP studies are conducted using coarse resolution data. However, the accuracy of such studies may be compromised due to the shortcomings inherent in the input data; as such, the evaluation of the BMP cost-effectiveness may not be accurate. The objective of this paper is to demonstrate the improvements of higher resolution images over coarse resolution data in BMP analyses. An unmanned aerial vehicle (UAV) was used to collect a more detailed and accurate picture of the digital surface model and digital elevation model. Landsat 8 multi-spectral imagery was classified by object-oriented classification to generate a land use/land cover map. The method used in this study provided more detailed and accurate information of the physical conditions of the study area, an improved subwatershed delineation, a more comprehensive list of the suitable locations for BMPs, and a more reliable estimate of the cost-effectiveness of the BMP ensembles than that generated using coarse resolution data. Using the fine resolution data, this study further determined the utility of the selected BMP ensembles under a changed future climate regime and identified the best BMP and BMP ensemble in reducing urban surface runoff. This method can be especially useful in areas without quality topography and land use data.","PeriodicalId":54840,"journal":{"name":"Journal of Environmental Informatics","volume":"1 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3808/jei.202000433","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 5
Abstract
Best Management Practices (BMPs) are commonly adopted to ameliorate the quality of runoff and reduce the frequency and intensity of flash floods in urban areas. To date, many of the BMP studies are conducted using coarse resolution data. However, the accuracy of such studies may be compromised due to the shortcomings inherent in the input data; as such, the evaluation of the BMP cost-effectiveness may not be accurate. The objective of this paper is to demonstrate the improvements of higher resolution images over coarse resolution data in BMP analyses. An unmanned aerial vehicle (UAV) was used to collect a more detailed and accurate picture of the digital surface model and digital elevation model. Landsat 8 multi-spectral imagery was classified by object-oriented classification to generate a land use/land cover map. The method used in this study provided more detailed and accurate information of the physical conditions of the study area, an improved subwatershed delineation, a more comprehensive list of the suitable locations for BMPs, and a more reliable estimate of the cost-effectiveness of the BMP ensembles than that generated using coarse resolution data. Using the fine resolution data, this study further determined the utility of the selected BMP ensembles under a changed future climate regime and identified the best BMP and BMP ensemble in reducing urban surface runoff. This method can be especially useful in areas without quality topography and land use data.
期刊介绍:
Journal of Environmental Informatics (JEI) is an international, peer-reviewed, and interdisciplinary publication designed to foster research innovation and discovery on basic science and information technology for addressing various environmental problems. The journal aims to motivate and enhance the integration of science and technology to help develop sustainable solutions that are consensus-oriented, risk-informed, scientifically-based and cost-effective. JEI serves researchers, educators and practitioners who are interested in theoretical and/or applied aspects of environmental science, regardless of disciplinary boundaries. The topics addressed by the journal include:
- Planning of energy, environmental and ecological management systems
- Simulation, optimization and Environmental decision support
- Environmental geomatics - GIS, RS and other spatial information technologies
- Informatics for environmental chemistry and biochemistry
- Environmental applications of functional materials
- Environmental phenomena at atomic, molecular and macromolecular scales
- Modeling of chemical, biological and environmental processes
- Modeling of biotechnological systems for enhanced pollution mitigation
- Computer graphics and visualization for environmental decision support
- Artificial intelligence and expert systems for environmental applications
- Environmental statistics and risk analysis
- Climate modeling, downscaling, impact assessment, and adaptation planning
- Other areas of environmental systems science and information technology.