Multi-Modal Diagnostics for Vehicle Fault Detection

Matthew L. Schwall, J. C. Gerdes
{"title":"Multi-Modal Diagnostics for Vehicle Fault Detection","authors":"Matthew L. Schwall, J. C. Gerdes","doi":"10.1115/imece2001/dsc-24600","DOIUrl":null,"url":null,"abstract":"\n On-board vehicle diagnostic systems must have low development and hardware costs in order to be viable. Model-based methods have shown promise since they use analytical redundancy to reduce costly physical redundancy. However, these methods must also be computationally efficient and function accurately even with simple, low-cost models.\n The approach presented in this paper uses multiple simple models to analyze dissimilar observable modes of a system. Residuals generated using the models are related and interpreted in a Bayesian network to determine fault probabilities and yield a diagnosis. The technique is demonstrated with a diagnostic system for automobile handling.","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/dsc-24600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

On-board vehicle diagnostic systems must have low development and hardware costs in order to be viable. Model-based methods have shown promise since they use analytical redundancy to reduce costly physical redundancy. However, these methods must also be computationally efficient and function accurately even with simple, low-cost models. The approach presented in this paper uses multiple simple models to analyze dissimilar observable modes of a system. Residuals generated using the models are related and interpreted in a Bayesian network to determine fault probabilities and yield a diagnosis. The technique is demonstrated with a diagnostic system for automobile handling.
车辆故障检测的多模态诊断
车载诊断系统必须具有较低的开发成本和硬件成本,才能具有可行性。基于模型的方法已经显示出前景,因为它们使用分析冗余来减少昂贵的物理冗余。然而,这些方法也必须计算效率高,即使在简单、低成本的模型下也能准确地运行。本文提出的方法使用多个简单模型来分析系统的不同可观测模态。使用模型产生的残差在贝叶斯网络中进行关联和解释,以确定故障概率并产生诊断。并以汽车操纵诊断系统为例进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信