{"title":"A Graph Neural Network-Based Algorithm for Point-of-Interest Recommendation Using Social Relation and Time Series","authors":"Mingjun Xin, Shicheng Chen, Chunjuan Zang","doi":"10.4018/ijwsr.2021100103","DOIUrl":null,"url":null,"abstract":"POI recommendation has gradually become an important topic in the field of service recommendation, which is always achieved by mining user behavior patterns. However, the context information of the collaborative signal is not encoded in the embedding process of traditional POI recommendation methods, which is not enough to capture the collaborative signal among different users. Therefore, a POI recommendation algorithm is presented by using social-time context graph neural network model (GNN) in Location-based social networks. First, it finds similarities between different social relationships based on the users' social and temporal behavior. Then, the similarity among different users is calculated by an improved Euclidean distance. Finally, it integrates the graph neural network, the interaction bipartite graph of users and social-time information into the algorithm to generate the final recommendation list in this paper. Experiments on real datasets show that the proposed method is superior to the state-of-the-art POI recommendation methods.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"1 1","pages":"51-74"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.2021100103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
POI recommendation has gradually become an important topic in the field of service recommendation, which is always achieved by mining user behavior patterns. However, the context information of the collaborative signal is not encoded in the embedding process of traditional POI recommendation methods, which is not enough to capture the collaborative signal among different users. Therefore, a POI recommendation algorithm is presented by using social-time context graph neural network model (GNN) in Location-based social networks. First, it finds similarities between different social relationships based on the users' social and temporal behavior. Then, the similarity among different users is calculated by an improved Euclidean distance. Finally, it integrates the graph neural network, the interaction bipartite graph of users and social-time information into the algorithm to generate the final recommendation list in this paper. Experiments on real datasets show that the proposed method is superior to the state-of-the-art POI recommendation methods.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.