Connecting Homomorphism and Separating Cycles

IF 0.4 Q4 MATHEMATICS
R. V. Ulvert
{"title":"Connecting Homomorphism and Separating Cycles","authors":"R. V. Ulvert","doi":"10.17516/1997-1397-2021-14-5-647-658","DOIUrl":null,"url":null,"abstract":"We discuss the construction of a long semi-exact Mayer–Vietoris sequence for the homology of any finite union of open subspaces. This sequence is used to obtain topological conditions of representation of the integral of a meromorphic n-form on an n-dimensional complex manifold in terms of Grothendieck residues. For such a representation of the integral to exist, it is necessary that the cycle of integration separates the set of polar hypersurfaces of the form. The separation condition in a number of cases turns out to be a sufficient condition for representing the integral as a sum of residues. Earlier, when describing such cases (in the works of Tsikh, Yuzhakov, Ulvert, etc.), the key was the condition that the manifold be Stein. The main result of this article is the relaxation of this condition","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"53 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2021-14-5-647-658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the construction of a long semi-exact Mayer–Vietoris sequence for the homology of any finite union of open subspaces. This sequence is used to obtain topological conditions of representation of the integral of a meromorphic n-form on an n-dimensional complex manifold in terms of Grothendieck residues. For such a representation of the integral to exist, it is necessary that the cycle of integration separates the set of polar hypersurfaces of the form. The separation condition in a number of cases turns out to be a sufficient condition for representing the integral as a sum of residues. Earlier, when describing such cases (in the works of Tsikh, Yuzhakov, Ulvert, etc.), the key was the condition that the manifold be Stein. The main result of this article is the relaxation of this condition
连接同态与分离循环
讨论了任意开子空间有限并的同调的长半精确Mayer-Vietoris序列的构造。利用该序列得到n维复流形上亚纯n型积分用格罗滕迪克残表示的拓扑条件。为了使这样的积分表示存在,积分循环必须分离出这种形式的极超曲面集。在许多情况下,分离条件被证明是将积分表示为残数和的充分条件。早些时候,在描述这种情况时(在Tsikh, Yuzhakov, Ulvert等人的作品中),关键是流形是Stein的条件。本文的主要成果是放宽了这一条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信