Perbandingan Fungsi Optimasi Neural Network Dalam Klasifikasi Kelayakan Calon Suami

Melisa Handayani, Maisarah Riandini, Zakarias Zakarias
{"title":"Perbandingan Fungsi Optimasi Neural Network Dalam Klasifikasi Kelayakan Calon Suami","authors":"Melisa Handayani, Maisarah Riandini, Zakarias Zakarias","doi":"10.31294/inf.v9i1.12318","DOIUrl":null,"url":null,"abstract":"adalah dengan menggunakan machine learning, khususnya menggunakan metode neural network . Penelitian ini bertujuan untuk menganalisa hasil klasifikasi kelayakan calon suami menggunakan metode neural network , dengan variasi kombinasi fungsi Rectified Linear Unit dan fungsi optimasi seperti Limited Memory Broyden–Fletcher–Goldfarb–Shanno Bound Constraint, Stochastic Gradient Descent dan Adative Moment Estimation . Hasil dari penelitian ini adalah bahwa kombinasi fungsi aktivasi Rectified Linear Unit dan fungsi optimasi Adaptive Moment Estimation merupakan yang Abstract The selection of a prospective husband is an important thing to consider to form a happy family. One way to help assess the suitability of a prospective husband is to use machine learning, especially using the neural network method. This study aims to analyze the results of the feasibility classification of prospective husbands using the neural network method, with variations in the combination of the Rectified Linear Unit function and optimization functions such as Limited Memory Broyden–Fletcher– Goldfarb–Shanno Bound Constraint, Stochastic Gradient Descent, and Adaptive Moment Estimation. The results of this study are that the combination of the Rectified Linear Unit activation function and the Adaptive Moment Estimation optimization function is the best, while the combination of the Rectified Linear Unit activation function and the Stochastic Gradient Descent optimization function is the worst, in terms of accuracy, precision and recall values respectively..","PeriodicalId":32029,"journal":{"name":"Proxies Jurnal Informatika","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proxies Jurnal Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31294/inf.v9i1.12318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

adalah dengan menggunakan machine learning, khususnya menggunakan metode neural network . Penelitian ini bertujuan untuk menganalisa hasil klasifikasi kelayakan calon suami menggunakan metode neural network , dengan variasi kombinasi fungsi Rectified Linear Unit dan fungsi optimasi seperti Limited Memory Broyden–Fletcher–Goldfarb–Shanno Bound Constraint, Stochastic Gradient Descent dan Adative Moment Estimation . Hasil dari penelitian ini adalah bahwa kombinasi fungsi aktivasi Rectified Linear Unit dan fungsi optimasi Adaptive Moment Estimation merupakan yang Abstract The selection of a prospective husband is an important thing to consider to form a happy family. One way to help assess the suitability of a prospective husband is to use machine learning, especially using the neural network method. This study aims to analyze the results of the feasibility classification of prospective husbands using the neural network method, with variations in the combination of the Rectified Linear Unit function and optimization functions such as Limited Memory Broyden–Fletcher– Goldfarb–Shanno Bound Constraint, Stochastic Gradient Descent, and Adaptive Moment Estimation. The results of this study are that the combination of the Rectified Linear Unit activation function and the Adaptive Moment Estimation optimization function is the best, while the combination of the Rectified Linear Unit activation function and the Stochastic Gradient Descent optimization function is the worst, in terms of accuracy, precision and recall values respectively..
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
20
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信