L. Chen, Rasmus Kyng, M. Gutenberg, Sushant Sachdeva
{"title":"A Simple Framework for Finding Balanced Sparse Cuts via APSP","authors":"L. Chen, Rasmus Kyng, M. Gutenberg, Sushant Sachdeva","doi":"10.48550/arXiv.2209.08845","DOIUrl":null,"url":null,"abstract":"We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\\widetilde{O}(m^2/\\phi)$ and finds an $\\widetilde{O}(\\phi)$-sparse balanced cut, when the given graph has a $\\phi$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}\\phi$-sparse balanced cuts in $m^{1+o(1)}/\\phi$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"29 1","pages":"42-55"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.08845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\widetilde{O}(m^2/\phi)$ and finds an $\widetilde{O}(\phi)$-sparse balanced cut, when the given graph has a $\phi$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}\phi$-sparse balanced cuts in $m^{1+o(1)}/\phi$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).