Modified Migrating Birds Optimization for Solving the Low-carbon Scheduling Problem

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Zhifeng Zhang, Yusheng Sun, Yadong Cui, Haodong Zhu
{"title":"Modified Migrating Birds Optimization for Solving the Low-carbon Scheduling Problem","authors":"Zhifeng Zhang, Yusheng Sun, Yadong Cui, Haodong Zhu","doi":"10.4018/ijghpc.2020100105","DOIUrl":null,"url":null,"abstract":"Production scheduling problems have historically emphasized cycle time without involving the environmental factors. In the study, a low-carbon scheduling problem in a flexible job shop is considered tominimize the energyconsumption,whichmainly consistsof twoparts: theuseful partandthewastedpart.First,amathematicalmodelisbuiltbasedonthefeaturesoftheworkshop. Second,amodifiedmigratingbird’soptimization(MMBO)isdevelopedtoobtaintheoptimalsolution. IntheMMBO,apopulationinitializationschemeisdesignedtoenhancethesolutionqualityand convergencespeed.Fivetypesofneighborhoodstructuresare introducedtocreateneighborhood solutions.Furthermore,alocalsearchmethodandaresetmechanismaredevelopedtoimprovethe computationalresults.Finally,experimentalresultsvalidatethattheMMBOiseffectiveandfeasible. KeywORdS Energy Consumption, Local Search, Machine Assignment, Manufacturing Industry, Neighborhood Structure, Operation Permutation, Production Scheduling, Reset Mechanism","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"3 1","pages":"63-75"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.2020100105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Production scheduling problems have historically emphasized cycle time without involving the environmental factors. In the study, a low-carbon scheduling problem in a flexible job shop is considered tominimize the energyconsumption,whichmainly consistsof twoparts: theuseful partandthewastedpart.First,amathematicalmodelisbuiltbasedonthefeaturesoftheworkshop. Second,amodifiedmigratingbird’soptimization(MMBO)isdevelopedtoobtaintheoptimalsolution. IntheMMBO,apopulationinitializationschemeisdesignedtoenhancethesolutionqualityand convergencespeed.Fivetypesofneighborhoodstructuresare introducedtocreateneighborhood solutions.Furthermore,alocalsearchmethodandaresetmechanismaredevelopedtoimprovethe computationalresults.Finally,experimentalresultsvalidatethattheMMBOiseffectiveandfeasible. KeywORdS Energy Consumption, Local Search, Machine Assignment, Manufacturing Industry, Neighborhood Structure, Operation Permutation, Production Scheduling, Reset Mechanism
求解低碳调度问题的改进型候鸟优化
生产调度问题历来都强调周期时间,而不考虑环境因素。在研究中,考虑了一个低碳调度问题,在灵活的工作商店中考虑了tominimize the energyconsumption,whichmainly consistsof twoparts: theuseful partandthewastedpart.First,amathematicalmodelisbuiltbasedonthefeaturesoftheworkshop。第二,amodifiedmigratingbird 'soptimization (MMBO)isdevelopedtoobtaintheoptimalsolution。IntheMMBO,apopulationinitializationschemeisdesignedtoenhancethesolutionqualityand convergencespeed。Fivetypesofneighborhoodstructuresare introducedtocreateneighborhood解决方案。Furthermore,alocalsearchmethodandaresetmechanismaredevelopedtoimprovethe computationalresults.Finally,experimentalresultsvalidatethattheMMBOiseffectiveandfeasible。关键词:能耗,局部搜索,机器分配,制造业,邻域结构,操作排列,生产调度,重置机制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信