Low-degree Pseudo-Boolean Function Recovery Using Codes

Orhan Ocal, S. Kadhe, K. Ramchandran
{"title":"Low-degree Pseudo-Boolean Function Recovery Using Codes","authors":"Orhan Ocal, S. Kadhe, K. Ramchandran","doi":"10.1109/ISIT.2019.8849424","DOIUrl":null,"url":null,"abstract":"Pseudo-Boolean functions are functions whose input variables are binary and output is in the real numbers. These functions show up in many different applications in computer science, finance and economics to name a few. Pseudo-Boolean functions lend themselves to a spectral representation, which is closely related to the Walsh-Hadamard Transform from signal processing. In some problems, the coefficients of the spectral representation are active only on the low-degree terms. In this work, we present a method for computationally-efficient recovery of these low-degree coefficients. Our method is based on evaluating the input pseudo-Boolean function at points given by the codewords of a codebook, and then performing a Walsh-Hadamard Transform on the resulting signal. Codes having high rates and good minimum distance properties yield sets of evaluations points whose size is close to the number of low-degree coefficients. In particular perfect codes, such as Hamming Codes or the Golay Code, enable efficient recovery with optimal number of evaluations of the function.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"11 1","pages":"1207-1211"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Pseudo-Boolean functions are functions whose input variables are binary and output is in the real numbers. These functions show up in many different applications in computer science, finance and economics to name a few. Pseudo-Boolean functions lend themselves to a spectral representation, which is closely related to the Walsh-Hadamard Transform from signal processing. In some problems, the coefficients of the spectral representation are active only on the low-degree terms. In this work, we present a method for computationally-efficient recovery of these low-degree coefficients. Our method is based on evaluating the input pseudo-Boolean function at points given by the codewords of a codebook, and then performing a Walsh-Hadamard Transform on the resulting signal. Codes having high rates and good minimum distance properties yield sets of evaluations points whose size is close to the number of low-degree coefficients. In particular perfect codes, such as Hamming Codes or the Golay Code, enable efficient recovery with optimal number of evaluations of the function.
使用代码的低次伪布尔函数恢复
伪布尔函数是输入变量为二进制,输出为实数的函数。这些功能出现在计算机科学、金融和经济学等许多不同的应用中。伪布尔函数是一种谱表示,它与信号处理中的沃尔什-阿达玛变换密切相关。在某些问题中,谱表示的系数仅在低次项上有效。在这项工作中,我们提出了一种计算效率高的方法来恢复这些低次系数。我们的方法是基于在码本的码字给出的点处计算输入伪布尔函数,然后对结果信号执行Walsh-Hadamard变换。具有高比率和良好的最小距离属性的代码产生的评估点集的大小接近于低次系数的数量。特别是完美的代码,如Hamming代码或Golay代码,可以通过最优的函数求值次数实现有效的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信