Ramana Kumar, Magnus O. Myreen, Michael Norrish, Scott Owens
{"title":"CakeML: a verified implementation of ML","authors":"Ramana Kumar, Magnus O. Myreen, Michael Norrish, Scott Owens","doi":"10.1145/2535838.2535841","DOIUrl":null,"url":null,"abstract":"We have developed and mechanically verified an ML system called CakeML, which supports a substantial subset of Standard ML. CakeML is implemented as an interactive read-eval-print loop (REPL) in x86-64 machine code. Our correctness theorem ensures that this REPL implementation prints only those results permitted by the semantics of CakeML. Our verification effort touches on a breadth of topics including lexing, parsing, type checking, incremental and dynamic compilation, garbage collection, arbitrary-precision arithmetic, and compiler bootstrapping. Our contributions are twofold. The first is simply in building a system that is end-to-end verified, demonstrating that each piece of such a verification effort can in practice be composed with the others, and ensuring that none of the pieces rely on any over-simplifying assumptions. The second is developing novel approaches to some of the more challenging aspects of the verification. In particular, our formally verified compiler can bootstrap itself: we apply the verified compiler to itself to produce a verified machine-code implementation of the compiler. Additionally, our compiler proof handles diverging input programs with a lightweight approach based on logical timeout exceptions. The entire development was carried out in the HOL4 theorem prover.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"351","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 351
Abstract
We have developed and mechanically verified an ML system called CakeML, which supports a substantial subset of Standard ML. CakeML is implemented as an interactive read-eval-print loop (REPL) in x86-64 machine code. Our correctness theorem ensures that this REPL implementation prints only those results permitted by the semantics of CakeML. Our verification effort touches on a breadth of topics including lexing, parsing, type checking, incremental and dynamic compilation, garbage collection, arbitrary-precision arithmetic, and compiler bootstrapping. Our contributions are twofold. The first is simply in building a system that is end-to-end verified, demonstrating that each piece of such a verification effort can in practice be composed with the others, and ensuring that none of the pieces rely on any over-simplifying assumptions. The second is developing novel approaches to some of the more challenging aspects of the verification. In particular, our formally verified compiler can bootstrap itself: we apply the verified compiler to itself to produce a verified machine-code implementation of the compiler. Additionally, our compiler proof handles diverging input programs with a lightweight approach based on logical timeout exceptions. The entire development was carried out in the HOL4 theorem prover.