{"title":"0Formulation and Evaluation of Self-Emulsifying Drug Delivery Systems for Candesartan Cilexetil","authors":"Balwan Singh, Manishita R. Sharma","doi":"10.37285/ijpsn.2022.15.2.3","DOIUrl":null,"url":null,"abstract":"Introduction: Candesartan cilexetil is an angiotensin receptor blocker prescribed for hypertension management. However the drug belonging to BCS class II has low solubility and in turn low bioavailability. Lipid-based drug delivery systems are gaining wide attention in the field of pharmaceutical formulations owing to their potential to enhance the solubility of poorly aqueous soluble drugs. \nObjective: “Present” work aimed to formulate and evaluate Candesartan cilexetil loaded Self-emulsifying drug delivery systems (SEDDS) as a potential antihypertensive drug delivery system by improving its solubility \nMethods: Formulation of drug incorporated SEDDS was carried out using various oils, surfactants, and cosurfactants. Preliminary solubility studies in these excipients were performed followed by the construction of a Pseudoternary phase diagram for optimization of all three excipient concentrations. After this, SEDDS of Candesartan were formulated and evaluated for clarity, phase separation, drug content, % transmittance, globule size, freeze-thaw, in vitro dissolution studies, and particle size analyses. \nResults: Observation from preliminary solubility studies resulted in the selection of Acrosyl k-160 (oil phase), Labrafac PG (surfactant), and Transcutol-P (co-surfactant). A pseudo ternary phase diagram was constructed to optimize the concentration ranges of chosen oil, surfactant, and co-surfactant. In total twelve formulations were prepared and evaluated for various parameters. FTIR analysis indicated negligible drug excipient interaction. CF11 was identified as the optimal formulation based on the particle size of an average of about 50.2nm, drug content (98.66%), and in vitro release profile, with a drug release of 99.41±5.79 % after one hour. The formulations were also put through thirty-day thermodynamic stability studies and were found to be stable \nConclusion: SEDDS can be formulated to improve the dissolution and oral bioavailability of the poorly water-soluble drug Candesartan, according to the findings of this study.","PeriodicalId":14382,"journal":{"name":"International Journal of Pharmaceutical Sciences and Nanotechnology","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutical Sciences and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ijpsn.2022.15.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Candesartan cilexetil is an angiotensin receptor blocker prescribed for hypertension management. However the drug belonging to BCS class II has low solubility and in turn low bioavailability. Lipid-based drug delivery systems are gaining wide attention in the field of pharmaceutical formulations owing to their potential to enhance the solubility of poorly aqueous soluble drugs.
Objective: “Present” work aimed to formulate and evaluate Candesartan cilexetil loaded Self-emulsifying drug delivery systems (SEDDS) as a potential antihypertensive drug delivery system by improving its solubility
Methods: Formulation of drug incorporated SEDDS was carried out using various oils, surfactants, and cosurfactants. Preliminary solubility studies in these excipients were performed followed by the construction of a Pseudoternary phase diagram for optimization of all three excipient concentrations. After this, SEDDS of Candesartan were formulated and evaluated for clarity, phase separation, drug content, % transmittance, globule size, freeze-thaw, in vitro dissolution studies, and particle size analyses.
Results: Observation from preliminary solubility studies resulted in the selection of Acrosyl k-160 (oil phase), Labrafac PG (surfactant), and Transcutol-P (co-surfactant). A pseudo ternary phase diagram was constructed to optimize the concentration ranges of chosen oil, surfactant, and co-surfactant. In total twelve formulations were prepared and evaluated for various parameters. FTIR analysis indicated negligible drug excipient interaction. CF11 was identified as the optimal formulation based on the particle size of an average of about 50.2nm, drug content (98.66%), and in vitro release profile, with a drug release of 99.41±5.79 % after one hour. The formulations were also put through thirty-day thermodynamic stability studies and were found to be stable
Conclusion: SEDDS can be formulated to improve the dissolution and oral bioavailability of the poorly water-soluble drug Candesartan, according to the findings of this study.