Spatio-temporal dependence modelling of extreme rainfall in South Africa: A Bayesian integrated nested Laplace approximation technique

Q4 Mathematics
T. A. Diriba, L. K. Debusho
{"title":"Spatio-temporal dependence modelling of extreme rainfall in South Africa: A Bayesian integrated nested Laplace approximation technique","authors":"T. A. Diriba, L. K. Debusho","doi":"10.1080/23737484.2023.2207503","DOIUrl":null,"url":null,"abstract":"Abstract The spatial and spatio-temporal dependence modeling to extreme value distributions have been used to analyze the extremes of daily maximum rainfall data across selected weather stations in South Africa combining generalized Pareto distribution (GPD) with the flexible Bayesian Latent Gaussian Model (LGM). The paper demonstrated the spatio-temporal GPD model for applications in extreme rainfall data that capture systematic variation through spatial and spatio-temporal modeling framework, in which the temporal constitutes the week and month as random separately. The paper uses the Bayesian integrated Nested Laplace approximation (INLA) algorithm to estimate marginal posterior means of the parameters and hyper-parameters for Bayesian spatio-temporal models. The Bayesian inferences using INLA technique were applied to obtain prediction of the return levels at each station, which incorporate uncertainty due to model estimation, as well as the randomness that is inherent in the processes.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"5 1","pages":"152 - 180"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2023.2207503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The spatial and spatio-temporal dependence modeling to extreme value distributions have been used to analyze the extremes of daily maximum rainfall data across selected weather stations in South Africa combining generalized Pareto distribution (GPD) with the flexible Bayesian Latent Gaussian Model (LGM). The paper demonstrated the spatio-temporal GPD model for applications in extreme rainfall data that capture systematic variation through spatial and spatio-temporal modeling framework, in which the temporal constitutes the week and month as random separately. The paper uses the Bayesian integrated Nested Laplace approximation (INLA) algorithm to estimate marginal posterior means of the parameters and hyper-parameters for Bayesian spatio-temporal models. The Bayesian inferences using INLA technique were applied to obtain prediction of the return levels at each station, which incorporate uncertainty due to model estimation, as well as the randomness that is inherent in the processes.
南非极端降雨的时空依赖模型:贝叶斯集成嵌套拉普拉斯近似技术
摘要结合广义帕累托分布(GPD)和灵活贝叶斯隐高斯模型(LGM),利用极值分布的时空依赖模型对南非部分气象站的日最大降雨量极值进行了分析。本文通过时空建模框架,以周、月为随机时间,建立了时空GPD模型,该模型可以捕捉极端降雨数据的系统变化。本文采用贝叶斯积分嵌套拉普拉斯近似(INLA)算法估计贝叶斯时空模型参数和超参数的边际后验均值。使用INLA技术的贝叶斯推断被用于获得每个站点的返回水平的预测,其中包括由于模型估计而产生的不确定性,以及过程中固有的随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信