Taming the snake instabilities in a polariton superfluid

F. Claude, S. Koniakhin, A. Maître, S. Pigeon, G. Lerario, D. D. Stupin, Q. Glorieux, E. Giacobino, D. Solnyshkov, G. Malpuech, A. Bramati
{"title":"Taming the snake instabilities in a polariton superfluid","authors":"F. Claude, S. Koniakhin, A. Maître, S. Pigeon, G. Lerario, D. D. Stupin, Q. Glorieux, E. Giacobino, D. Solnyshkov, G. Malpuech, A. Bramati","doi":"10.1364/optica.405946","DOIUrl":null,"url":null,"abstract":"The dark solitons observed in a large variety of nonlinear media are unstable against the modulational (snake) instabilities and can break in vortex streets. This behavior has been investigated in nonlinear optical crystals and ultracold atomic gases. However, a deep characterization of this phenomenon is still missing. In a resonantly pumped 2D polariton superfluid, we use an all-optical imprinting technique together with the bistability of the polariton system to create dark solitons in confined channels. Due to the snake instabilities, the solitons are unstable and break in arrays of vortex streets whose dynamical evolution is frozen by the pump-induced confining potential, allowing their direct observation in our system. A deep quantitative study shows that the vortex street period is proportional to the quantum fluid healing length, in agreement with the theoretical predictions. Finally, the full control achieved on the soliton patterns is exploited to give a proof of principle of an efficient, ultra-fast, analog, all-optical maze solving machine in this photonic platform.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optica.405946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The dark solitons observed in a large variety of nonlinear media are unstable against the modulational (snake) instabilities and can break in vortex streets. This behavior has been investigated in nonlinear optical crystals and ultracold atomic gases. However, a deep characterization of this phenomenon is still missing. In a resonantly pumped 2D polariton superfluid, we use an all-optical imprinting technique together with the bistability of the polariton system to create dark solitons in confined channels. Due to the snake instabilities, the solitons are unstable and break in arrays of vortex streets whose dynamical evolution is frozen by the pump-induced confining potential, allowing their direct observation in our system. A deep quantitative study shows that the vortex street period is proportional to the quantum fluid healing length, in agreement with the theoretical predictions. Finally, the full control achieved on the soliton patterns is exploited to give a proof of principle of an efficient, ultra-fast, analog, all-optical maze solving machine in this photonic platform.
驯服极化子超流体中的蛇形不稳定性
在各种非线性介质中观测到的暗孤子在调制(蛇形)不稳定性下是不稳定的,并且可能在涡旋街道中断裂。这种行为已经在非线性光学晶体和超冷原子气体中进行了研究。然而,对这一现象的深刻描述仍然缺失。在共振泵浦的二维极化子超流体中,我们利用全光印迹技术和极化子系统的双稳定性在受限通道中产生暗孤子。由于蛇形不稳定性,孤子是不稳定的,并在涡街阵列中断裂,涡街的动力学演变被泵诱导的限制势冻结,从而允许在我们的系统中直接观察它们。深入的定量研究表明,涡旋街周期与量子流体愈合长度成正比,与理论预测一致。最后,利用对孤子模式的完全控制,给出了在该光子平台上高效、超快速、模拟、全光迷宫求解机的原理证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信