Luminita Crisan, A. Borota, Alina Bora, S. Funar-Timofei
{"title":"Neonicotinoids activity against Cowpea aphids by computational estimation","authors":"Luminita Crisan, A. Borota, Alina Bora, S. Funar-Timofei","doi":"10.22052/IJMC.2019.176522.1433","DOIUrl":null,"url":null,"abstract":"In this study, the insecticidal activity against Cowpea aphids (Aphis craccivora) of a series of 23 phenylazo, pyrrole-, dihydropyrrole-fused and chain-opening nitromethyleneneonicotinoids was evaluated by using the multiple linear regression (MLR) and pharmacophore modelling. Conformer insecticide ensembles were modeled using the MMFF94s force field. Minimum energy conformers were employed to calculate structural parameters, which were related to the experimental pLC50 values. Several statistical criteria of goodness of fit and predictivity were checked to validate the models. Robust and predictable MLR models were obtained. Further, the Phase module from Schrodinger suite was engaged in the generation of the ligand-based pharmacophore models. The atom-based 3D-QSAR module from the aforementioned software was used for the validation of a best four-point pharmacophore model. The obtained significant statistical parameters attested thepharmacophore model validity. The MLR and pharmacophore models are useful for the prediction of new insecticides with activity against Cowpea aphids.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":"4 1","pages":"21-44"},"PeriodicalIF":1.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2019.176522.1433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the insecticidal activity against Cowpea aphids (Aphis craccivora) of a series of 23 phenylazo, pyrrole-, dihydropyrrole-fused and chain-opening nitromethyleneneonicotinoids was evaluated by using the multiple linear regression (MLR) and pharmacophore modelling. Conformer insecticide ensembles were modeled using the MMFF94s force field. Minimum energy conformers were employed to calculate structural parameters, which were related to the experimental pLC50 values. Several statistical criteria of goodness of fit and predictivity were checked to validate the models. Robust and predictable MLR models were obtained. Further, the Phase module from Schrodinger suite was engaged in the generation of the ligand-based pharmacophore models. The atom-based 3D-QSAR module from the aforementioned software was used for the validation of a best four-point pharmacophore model. The obtained significant statistical parameters attested thepharmacophore model validity. The MLR and pharmacophore models are useful for the prediction of new insecticides with activity against Cowpea aphids.