On the Discrepancy of Two Families of Permuted Van der Corput Sequences

Florian Pausinger, Alev Topuzoglu
{"title":"On the Discrepancy of Two Families of Permuted Van der Corput Sequences","authors":"Florian Pausinger, Alev Topuzoglu","doi":"10.1515/udt-2018-0003","DOIUrl":null,"url":null,"abstract":"Abstract A permuted van der Corput sequence Sbσ $S_b^\\sigma$ in base b is a one-dimensional, infinite sequence of real numbers in the interval [0, 1), generation of which involves a permutation σ of the set {0, 1,..., b − 1}. These sequences are known to have low discrepancy DN, i.e. t(Sbσ):=lim supN→∞DN(Sbσ)/log N $t\\left({S_b^\\sigma } \\right): = {\\rm{lim}}\\,{\\rm{sup}}_{N \\to \\infty } D_N \\left({S_b^\\sigma } \\right)/{\\rm{log}}\\,N$ is finite. Restricting to prime bases p we present two families of generating permutations. We describe their elements as polynomials over finite fields 𝔽p in an explicit way. We use this characterization to obtain bounds for t(Spσ) $t\\left({S_p^\\sigma } \\right)$ for permutations σ in these families. We determine the best permutations in our first family and show that all permutations of the second family improve the distribution behavior of classical van der Corput sequences in the sense that t(Spσ)","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"37 1","pages":"47 - 64"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/udt-2018-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract A permuted van der Corput sequence Sbσ $S_b^\sigma$ in base b is a one-dimensional, infinite sequence of real numbers in the interval [0, 1), generation of which involves a permutation σ of the set {0, 1,..., b − 1}. These sequences are known to have low discrepancy DN, i.e. t(Sbσ):=lim supN→∞DN(Sbσ)/log N $t\left({S_b^\sigma } \right): = {\rm{lim}}\,{\rm{sup}}_{N \to \infty } D_N \left({S_b^\sigma } \right)/{\rm{log}}\,N$ is finite. Restricting to prime bases p we present two families of generating permutations. We describe their elements as polynomials over finite fields 𝔽p in an explicit way. We use this characterization to obtain bounds for t(Spσ) $t\left({S_p^\sigma } \right)$ for permutations σ in these families. We determine the best permutations in our first family and show that all permutations of the second family improve the distribution behavior of classical van der Corput sequences in the sense that t(Spσ)
论置换Van der Corput序列的两族差异
以b为基底的置换van der Corput序列Sbσ $S_b^\sigma$是区间[0,1)上的一维无限实数序列,其生成涉及集合{0,1,…, b−1}。已知这些序列具有低差异DN,即t(Sbσ):=lim supN→∞DN(Sbσ)/log N $t\left({S_b^\sigma } \right): = {\rm{lim}}\,{\rm{sup}}_{N \to \infty } D_N \left({S_b^\sigma } \right)/{\rm{log}}\,N$是有限的。在素数基p的限制下,我们给出了生成置换的两个族。我们以明确的方式将它们的元素描述为有限域𝔽p上的多项式。我们利用这个表征得到了这些家族中排列σ的t(Spσ) $t\left({S_p^\sigma } \right)$的界。我们确定了第一族的最佳排列,并证明第二族的所有排列在t(Spσ)的意义上改善了经典van der Corput序列的分布行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信