A Systematic Review on Educational Data Mining

M. Manjula
{"title":"A Systematic Review on Educational Data Mining","authors":"M. Manjula","doi":"10.32628/IJSRSET184432","DOIUrl":null,"url":null,"abstract":"In this paper, implementing K-Means clustering algorithm for analyzing the particular dataset and data mining. The main purpose is WEKA process. In Weka process we can get perfect graph, accuracy and random process. The Pre-processing was important concept it may clear a null values, removes a unwanted data and unwanted memory space. In Data mining analyzing data set. In Data mining implementing two methods classification, clustering process. By using classification, clustering we get flexible result and large amount of database. Here, weka process and K-means algorithm going to compare whether both graphs are accurate manner. Keyword : K-means clustering, Weka process, Classification, Cluster process.","PeriodicalId":14228,"journal":{"name":"International Journal of Scientific Research in Science, Engineering and Technology","volume":"33 1","pages":"164-170"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/IJSRSET184432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, implementing K-Means clustering algorithm for analyzing the particular dataset and data mining. The main purpose is WEKA process. In Weka process we can get perfect graph, accuracy and random process. The Pre-processing was important concept it may clear a null values, removes a unwanted data and unwanted memory space. In Data mining analyzing data set. In Data mining implementing two methods classification, clustering process. By using classification, clustering we get flexible result and large amount of database. Here, weka process and K-means algorithm going to compare whether both graphs are accurate manner. Keyword : K-means clustering, Weka process, Classification, Cluster process.
教育数据挖掘系统综述
本文实现了K-Means聚类算法对特定数据集的分析和数据挖掘。主要用途是WEKA流程。在Weka过程中,我们可以得到完美的图,精度和随机过程。预处理是一个重要的概念,它可以清除空值,删除不需要的数据和不需要的内存空间。在数据挖掘中分析数据集。在数据挖掘中实现分类、聚类两种方法处理。通过分类、聚类等方法得到灵活的结果和海量的数据库。这里,weka过程和K-means算法将以比较两种图是否准确的方式进行比较。关键词:K-means聚类,Weka过程,分类,聚类过程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信