{"title":"Properties of polybutylene succinate and polybutylene succinate -polycaprolactone based composite reinforced with coconut shell particles","authors":"S. Savetlana, T. Gough, A. Kelly","doi":"10.1080/09276440.2023.2190680","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to increase the interfacial adhesion between polybutylene succinate and coconut shell particles, two kinds of chemical treatment of coconut shell particle were carried out. Firstly, a 5% sodium hydroxide treatment and secondly, a 2% sodium hydroxide plus silane coupling agent treatment. The possibility of increasing matrix adhesion has also been explored through addition of polycaprolactone to polybutylene succinate as a matrix. Composites were produced using extrusion prior to injection moulding. The results show that, compared with neat polybutylene succinate, composites with low percentage of particle loading have a higher tensile strength and strain at break despite their lower elastic modulus. A higher elastic modulus can be obtained for composites with higher particle loadings through sacrifice of their ductility. The same trend is observed for composites with the polymer-blend matrix. Scanning electron micrographs show good adhesion between particle and matrix for particles that undergo the second treatment. At low percentage of particle addition, the crystallinity of the composites is higher than the neat polybutylene succinate, however melting temperature is less affected by the addition of reinforcement. Rheological properties such as storage modulus, loss modulus and complex viscosity of the composites are higher than for neat polybutylene succinate. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"25 1","pages":"1119 - 1144"},"PeriodicalIF":2.1000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2190680","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In order to increase the interfacial adhesion between polybutylene succinate and coconut shell particles, two kinds of chemical treatment of coconut shell particle were carried out. Firstly, a 5% sodium hydroxide treatment and secondly, a 2% sodium hydroxide plus silane coupling agent treatment. The possibility of increasing matrix adhesion has also been explored through addition of polycaprolactone to polybutylene succinate as a matrix. Composites were produced using extrusion prior to injection moulding. The results show that, compared with neat polybutylene succinate, composites with low percentage of particle loading have a higher tensile strength and strain at break despite their lower elastic modulus. A higher elastic modulus can be obtained for composites with higher particle loadings through sacrifice of their ductility. The same trend is observed for composites with the polymer-blend matrix. Scanning electron micrographs show good adhesion between particle and matrix for particles that undergo the second treatment. At low percentage of particle addition, the crystallinity of the composites is higher than the neat polybutylene succinate, however melting temperature is less affected by the addition of reinforcement. Rheological properties such as storage modulus, loss modulus and complex viscosity of the composites are higher than for neat polybutylene succinate. GRAPHICAL ABSTRACT
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields